Abstract

The paper presents a two-dimensional computational fluid dynamics (CFD) model of lab-scale fixed-bed pyrolytic reactor. The goal of the work was to verify assumptions regarding construction and operating parameters of the pyrolytic reactor and examining heat transfer conditions and the final temperature distribution in the system taking into account the endothermic pyrolysis reactions occurrence. The impact of the most important numerical parameters on simulation results was also investigated. Model was prepared in ansys fluent 18.2 software. The studies have shown large temperature gradients both in the biomass deposit and at the reactor walls. The analysis has confirmed the validity of the proposed reactor construction concept and allowed to specify the range of thermal power value necessary for obtaining the pyrolysis process in a system with given properties and dimensions. Increasing the heat flux supplying the reactor from 160 to 480 W caused acceleration and intensification of biomass thermal decomposition, while the average final bed temperature after 10 min of heating in each case was reaching similar level. Low thermal conductivity of the bed and strong heat absorption due to pyrolysis suppress heat transfer through the bed, which causes significant temperature differences between the warmest and coldest regions of the bed. However, temperature unevenness and hence the unevenness of the pyrolysis process can provide favorable conditions for measuring the gas composition leaving the reactor due to the relatively balanced time stream of pyrolysis gases.

References

1.
Zuwała
,
J.
,
Kopczyński
,
M.
, and
Robak
,
J.
,
2014
, “
Coupled Torrefaction-Pelletization Process for Biomass Co-Firing, Techno-Economic Issues (in Polish Ocena Efektywnoœci Techniczno-Ekonomicznej Sprężonego Układu Toryfikacja—Peletyzacja—Współspalanie Biomasy)
,”
Energy Policy J.
,
17
(
4
), pp.
147
158
.
2.
Sprenger
,
C. J.
,
Tabil
,
L. G.
,
Soleimani
,
M.
,
Agnew
,
J.
, and
Harrison
,
A.
,
2018
, “
Pelletization of Refuse-Derived Fuel Fluff to Produce High Quality Feedstock
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042003
. 10.1115/1.4039315
3.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2018
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
. 10.1115/1.4038406
4.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
. 10.1115/1.4039601
5.
Anca-Couce
,
A.
,
2016
, “
Reaction Mechanisms and Multi-Scale Modelling of Lignocellulosic Biomass Pyrolysis
,”
Prog. Energy Combust. Sci.
,
53
, pp.
41
79
. 10.1016/j.pecs.2015.10.002
6.
Szymański
,
Ł.
,
Grabowska
,
B.
,
Kaczmarska
,
K.
, and
Kurleto
,
Ż.
,
2015
, “
Cellulose and Its Derivatives—Applications in Industry (in Polish Celuloza i jej Pochodne—Zastosowanie w Przemyśle)
,”
Arch. Foundry Eng.
,
15
(
4
), pp.
129
132
. 10.1515/afe-2015-0092
7.
Yang
,
Y.
,
Zhang
,
M.
, and
Wang
,
D.
,
2018
, “
A Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041804
. 10.1115/1.4039602
8.
Zhang
,
Z.
,
Zhu
,
M.
,
Hobson
,
P.
,
Doherty
,
W.
, and
Zhang
,
D.
,
2018
, “
Contrasting the Pyrolysis Behavior of Selected Biomass and the Effect of Lignin
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062201
. 10.1115/1.4039321
9.
Xue
,
Q.
,
Dalluge
,
D.
,
Heindel
,
T. J.
,
Fox
,
R. O.
, and
Brown
,
R. C.
,
2012
, “
Experimental Validation and CFD Modeling Study of Biomass Fast Pyrolysis in Fluidized-Bed Reactors
,”
Fuel
,
97
, pp.
757
769
. 10.1016/j.fuel.2012.02.065
10.
Bashir
,
M.
,
Yu
,
X.
,
Hassan
,
M.
, and
Makkawi
,
Y.
,
2017
, “
Modeling and Performance Analysis of Biomass Fast Pyrolysis in a Solar-Thermal Reactor
,”
ACS Sustain. Chem. Eng.
,
5
(
5
), pp.
3795
3807
. 10.1021/acssuschemeng.6b02806
11.
Boateng
,
A. A.
, and
Mtui
,
P. L.
,
2012
, “
CFD Modeling of Space-Time Evolution of Fast Pyrolysis Products in a Bench-Scale Fluidized-Bed Reactor
,”
Appl. Therm. Eng.
,
33–34
, pp.
190
198
. 10.1016/j.applthermaleng.2011.09.034
12.
Yu
,
X.
,
Makkawi
,
Y.
,
Ocone
,
R.
,
Huard
,
M.
,
Briens
,
C.
, and
Berruti
,
F.
,
2014
, “
A CFD Study of Biomass Pyrolysis in a Downer Reactor Equipped With a Novel Gas–Solid Separator—I: Hydrodynamic Performance
,”
Fuel Process. Technol.
,
126
, pp.
366
382
. 10.1016/j.fuproc.2014.05.020
13.
Yu
,
X.
,
Hassan
,
M.
,
Ocone
,
R.
, and
Makkawi
,
Y.
,
2015
, “
A CFD Study of Biomass Pyrolysis in a Downer Reactor Equipped With a Novel Gas–Solid Separator-II Thermochemical Performance and Products
,”
Fuel Process. Technol.
,
133
, pp.
51
63
. 10.1016/j.fuproc.2015.01.002
14.
Lee
,
Y. R.
,
Choi
,
H. S.
,
Park
,
H. C.
, and
Lee
,
J. E.
,
2015
, “
A Numerical Study on Biomass Fast Pyrolysis Process: A Comparison Between Full Lumped Modeling and Hybrid Modeling Combined With CFD
,”
Comput. Chem. Eng.
,
82
, pp.
202
215
. 10.1016/j.compchemeng.2015.07.007
15.
Liu
,
B.
,
Papadikis
,
K.
,
Gu
,
S.
,
Fidalgo
,
B.
,
Longhurst
,
P.
,
Li
,
Z.
, and
Kolios
,
A.
,
2017
, “
CFD Modelling of Particle Shrinkage in a Fluidized Bed for Biomass Fast Pyrolysis With Quadrature Method of Moment
,”
Fuel Process. Technol.
,
164
, pp.
51
68
. 10.1016/j.fuproc.2017.04.012
16.
Zeng
,
K.
,
Soria
,
J.
,
Gauthier
,
D.
,
Mazza
,
G.
, and
Flamant
,
G.
,
2016
, “
Modeling of Beech Wood Pellet Pyrolysis Under Concentrated Solar Radiation
,”
Renew. Energy
,
99
, pp.
721
729
. 10.1016/j.renene.2016.07.051
17.
Soria
,
J.
,
Zeng
,
K.
,
Asensio
,
D.
,
Gauthier
,
D.
,
Flamant
,
G.
, and
Mazza
,
G.
,
2017
, “
Comprehensive CFD Modelling of Solar Fast Pyrolysis of Beech Wood Pellets
,”
Fuel Process. Technol.
,
158
, pp.
226
237
. 10.1016/j.fuproc.2017.01.006
18.
Ranzi
,
E.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Frassoldati
,
A.
,
Migliavacca
,
G.
,
Pierucci
,
S.
, and
Sommariva
,
S.
,
2008
, “
Chemical Kinetics of Biomass Pyrolysis
,”
Energy Fuels
,
22
(
6
), pp.
4292
4300
. 10.1021/ef800551t
19.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z.
,
Ruan
,
M.
,
Song
,
Z.
, and
Liu
,
L.
,
2018
, “
Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072203
. 10.1115/1.4039445
20.
Prakash
,
N.
, and
Karunanithi
,
T.
,
2008
, “
Kinetic Modeling in Biomass Pyrolysis—A Review
,”
J. Appl. Sci. Res.
,
4
(
20
), pp.
1627
1636
.
21.
White
,
J. E.
,
Catallo
,
W. J.
, and
Legendre
,
B. L.
,
2011
, “
Biomass Pyrolysis Kinetics: A Comparative Critical Review With Relevant Agricultural Residue Case Studies
,”
J. Anal. Appl. Pyrolysis
,
91
(
1
), pp.
1
33
. 10.1016/j.jaap.2011.01.004
22.
Hameed
,
S.
,
Sharma
,
A.
,
Pareek
,
V.
,
Wu
,
H.
, and
Yu
,
Y.
,
2019
, “
A Review on Biomass Pyrolysis Models : Kinetic, Network and Mechanistic Models
,”
Biomass Bioenergy
,
123
, pp.
104
122
. 10.1016/j.biombioe.2019.02.008
23.
Grønli
,
M. G.
, and
Melaaen
,
M. C.
,
2000
, “
Mathematical Model for Wood Pyrolysis—Comparison of Experimental Measurements With Model Predictions
,”
Energy Fuels
,
14
(
4
), pp.
791
800
. 10.1021/ef990176q
24.
ANSYS Inc
,
2013
,
ansys fluent Theory Guide, Release 15.0
, pp.
724
746
.
25.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson
, pp.
10
20
.
26.
Kaczor
,
Z.
,
Bulinski
,
Z.
, and
Werle
,
S.
,
2019
, “
Numerical Studies on Capability to Focus Solar Radiation With Mirrors of Different Curvatures
,”
Therm. Sci.
,
23
(
4
), pp.
1153
1162
. 10.2298/TSCI19S4153K
27.
Chan
,
W.-C. R.
,
Kelbon
,
M.
, and
Krieger
,
B. B.
,
1985
, “
Modelling and Experimental Verification of Physical and Chemical Processes During Pyrolysis of a Large Biomass Particle
,”
Fuel
,
64
(
11
), pp.
1505
1513
. 10.1016/0016-2361(85)90364-3
28.
Kaczor
,
Z.
,
Buliński
,
Z.
, and
Werle
,
S.
,
2018
, “Preliminary Study on Computational Modelling of Slow Solar Pyrolysis of Biomass,”
Contemporary Problems of Power Engineering and Environmental Protection
,
K.
Pikoń
, and
L.
Czarnowska
, eds.,
Department of Technologies and Installations for Waste Management
,
Gliwice, Poland
, pp.
161
171
.
29.
Curtis
,
L. J.
, and
Miller
,
D. J.
,
1988
, “
Transport Model With Radiative Heat Transfer for Rapid Cellulose Pyrolysis
,”
Ind. Eng. Chem. Res.
,
27
(
10
), pp.
1775
1783
. 10.1021/ie00082a007
30.
Grønil
,
M. G.
,
1996
, “
A Theoretical and Experimental Study of the Thermal Degradation of Biomass
,”
PhD thesis
,
The Norwegian University of Science and Technology
,
Trondheim
.
31.
Lee
,
C. K.
,
Chaiken
,
R. F.
, and
Singer
,
J. M.
,
1976
, “
Charring Pyrolysis of Wood in Fires by Laser Simulation
,”
16th International Symposium on Combustion
,
Pittsburgh, PA
.
32.
Blondeau
,
J.
, and
Jeanmart
,
H.
,
2012
, “
Biomass Pyrolysis at High Temperatures: Prediction of Gaseous Species Yields From an Anisotropic Particle
,”
Biomass Bioenergy
,
41
, pp.
107
121
. 10.1016/j.biombioe.2012.02.016
33.
Pozzobon
,
V.
,
Salvador
,
S.
,
Bézian
,
J. J.
,
El-Hafi
,
M.
,
LeMaoult
,
Y.
, and
Flamant
,
G.
,
2014
, “
Radiative Pyrolysis of Wet Wood Under Intermediate Heat Flux: Experiments and Modelling
,”
Fuel Process. Technol.
,
128
, pp.
319
330
. 10.1016/j.fuproc.2014.07.007
34.
Fan
,
L. T.
,
Fan
,
L. S.
,
Miyanami
,
K.
,
Chen
,
T. Y.
, and
Walawender
,
W. P.
,
1977
, “
A Mathematical Model for Pyrolysis of a Solid Particle: Effects of the Lewis Numer
,”
Can. J. Chem. Eng.
,
55
(
1
), pp.
47
53
. 10.1002/cjce.5450550109
35.
Brown
,
L. E.
,
1972
,
An Experimental and Analytic Study of Wood Pyrolysis
,
The University of Oklahoma
,
Norman, OK
.
You do not currently have access to this content.