It is desired, through this work, to investigate in detail the scenario that takes place behind a single wind turbine unit by focusing on three parameters; average axial wind velocity component, velocity deficit, and total turbulence intensity. The testing was done at mainstream velocity, U, of 5.2 m/s, u and v velocity components were captured by x-probe dual-sensor hot wire anemometer. A massive amount of point data was obtained, which then processed by a matlab script to plot the desired contours through the successive transverse sections along the entire length of the test section. By monitoring the previously mentioned flow parameters, the regions of low velocity and high turbulence can be avoided, while the location of the subsequent wind turbine is selected. The estimation of the distance, at which the inlet flow field will restore its original characteristics after being mixed through the rotor blades, is very important as this is the distance that should separate two successive turbines in an inline configuration wind farm to guarantee the optimum performance and to extract the maximum power out of the subsequent array of turbines. It is found that the hub height axial velocity recovery at six rotor diameters downstream distance is only 82%. This fact means that the power extraction out of the downstream turbine in an inline configuration wind farm is only 55% of the upstream turbine if the same free stream velocity and blade design are adopted.

References

1.
Sanderse
,
B.
,
2009
, “
Aerodynamics of Wind Turbine Wakes: Literature Review
,” ECN, Wiley, Hoboken, NJ, Report No. ECNE-09e016.
2.
Crespo
,
A.
,
Hernandez
,
J.
, and
Frandsen
,
S.
,
1999
, “
Survey of Modeling Methods for Wind Turbine Wakes and Wind Farms
,”
Wind Energy
,
2
(
1
), pp.
1
24
.
3.
Bossanyi
,
E. A.
,
Maclean
,
C.
,
Whittle
,
G. E.
,
Dunn
,
P. D.
,
Lipman
,
N. H.
, and
Musgrove
,
P. J.
,
1980
, “
The Efficiency of Wind Turbine Clusters
,”
Third International Symposium on Wind Energy Systems
, Lyngby, Denmark, Aug. 26–29, pp.
401
416
.
4.
Emeis
,
S.
, and
Frandsen
,
S.
,
1993
, “
Reduction of Horizontal Wind Speed in a Boundary Layer With Obstacles
,”
Boundary Layer Meteorol.
,
64
(
3
), pp.
297
305
.
5.
Kiranoudis
,
C. T.
, and
Maroulis
,
Z. B.
,
1997
, “
Effective Short-Cut Modelling of Wind Park Efficiency
,”
Renewable Energy
,
11
(
4
), pp.
439
457
.
6.
Voutsinas
,
S. G.
,
Rados
,
K. G.
, and
Zervos
,
A.
,
1990
, “
The Effect of the Non-Uniformity of the Wind Velocity Field in the Optimal Design of Wind Parks
,”
European Community Wind Energy Conference
, Madrid, Spain, Sept. 10–14, pp.
181
185
.
7.
Magnusson
,
M.
,
Rados
,
K. G.
, and
Pothou
,
K. P.
,
1996
, “
Wake Effects in Alsvik Wind Park: Comparison Between Measurements and Predictions
,”
European Union Wind Energy Conference
, Goteborg, Sweden, May 20–24, pp.
769
772
.
8.
Magnusson
,
M.
,
Rados
,
K. G.
, and
Voutsinas
,
S. G.
,
1996
, “
A Study of the Flow Downstream of a Wind Turbine Using Measurements and Simulations
,”
Wind Eng.
,
20
(6), pp.
389
403
.
9.
Stefanatos
,
N. C.
,
Voutsinas
,
S. G.
,
Rados
,
K. G.
, and
Zervos
,
A.
,
1994
, “
A Combined Experimental and Numerical Investigation of Wake Effects in Complex Terrain
,”
European Wind Energy Association Conference and Exhibition (EWEC)
, Thessaloniki, Greece, Oct. 10–14, pp.
484
490
.
10.
Stefanatos
,
N. C.
,
Morfiadakis
,
E. E.
, and
Glinou
,
G. L.
,
1996
, “
Wake Measurements in Complex Terrain
,”
European Union Wind Energy Conference
, Goteborg, Sweden, May 20–24, pp.
773
777
.
11.
Crespo
,
A.
, and
Gomez-Elvira
,
R.
,
1997
, “
Effect of the Proximity of Land on Wind Farm Performance for Offshore Flow
,”
European Seminar (OWEMES'97
), La Magdalene, Sardinia, Apr. 10–11, pp.
33
41
.
12.
Magnusson
,
M.
, and
Smedman
,
A. S.
,
1996
, “
A Practical Method to Estimate Wind Turbine Wake Characteristics From Turbine Data and Routine Wind Measurements
,”
Wind Eng.
,
20
(2), pp.
73
92
.
13.
Magnusson
,
M.
, and
Smedman
,
A. S.
,
1999
, “
Airflow Behind Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
1–2
), pp.
169
189
.
14.
Frandsen
,
S.
, and
Christensen
,
C. J.
,
1994
, “
Structural Loads in Large Wind Farm Arrays
,”
EWEC'94
, Thessaloniki, Greece, Oct. 10–14, pp.
116
122
.
15.
Frandsen
,
S.
, and
Thomsen
,
K.
,
1997
, “
Change in Fatigue and Extreme Loading When Moving Wind Farms Offshore
,”
Wind Eng.
,
21
(3), pp.
197
214
.
16.
Sanderse
,
B.
,
Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
17.
Sumner
,
J.
,
Watters
,
C.
, and
Masson
,
C.
,
2010
, “
CFD in Wind Energy: The Virtual Multiscale Wind Tunnel
,”
Energies
,
3
(
5
), pp.
989
1013
.
18.
Chow
,
F.
, and
Street
,
R.
,
2009
, “
Evaluation of Turbulence Closure Models for Large-Eddy Simulation Over Complex Terrain: Flow Over Askervein Hill
,”
J. Appl. Meteorol. Clim
,
48
(
5
), pp.
1050
1065
.
19.
Chow
,
F.
,
Weigel
,
A.
,
Street
,
R.
,
Rotach
,
M.
, and
Xue
,
M.
,
2006
, “
High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley—I: Methodology, Verification, and Sensitivity Experiments
,”
J. Appl. Meteorol.
,
45
(
1
), pp.
63
86
.
20.
Miller
,
A.
,
Chang
,
B.
,
Issa
,
R.
, and
Chen
,
G.
,
2013
, “
Review of Computer-Aided Numerical Simulation in Wind Energy
,”
Renewable Sustainable Energy Rev.
,
25
, pp.
122
134
.
21.
Uchida
,
T.
, and
Ohya
,
Y.
,
2008
, “
Micro-Siting Technique for Wind Turbine Generators by Using Large-Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
2121
2138
.
22.
Saavedra-Moreno
,
B.
,
Salcedo-Sanz
,
S.
,
Paniagua-Tineo
,
A.
,
Prieto
,
L.
, and
Portilla-Figueras
,
A.
,
2011
, “
Seeding Evolutionary Algorithms With Heuristics for Optimal Wind Turbines Positioning in Wind Farms
,”
Renewable Energy
,
36
(
11
), pp.
2838
2844
.
23.
Wan
,
C.
,
Wang
,
J.
,
Yang
,
G.
,
Gu
,
H.
, and
Zhang
,
X.
,
2012
, “
Wind Farm Micro-Siting by Gaussian Particle Swarm Optimization With Local Search Strategy
,”
Renewable Energy
,
48
, pp.
276
286
.
24.
Torres
,
P.
,
van Wingerden
,
J. W.
, and
Verhaegen
,
M.
,
2011
, “
Modeling of the Flow in Wind Farms for Total Power Optimization” Control and Automation
,”
Ninth IEEE International Conference
(
ICCA
), Santiago, Chile, Dec. 19–21, pp.
963
968
.
25.
Xu
,
X.
,
Chen
,
Y.
,
Zheng
,
Y.
,
Bai
,
X.
,
Wei
,
M.
, and
Liu
,
Y.
,
2010
, “
Observation and Simulation of Wind Energy Resource in Jiangsu Coastal Area
,”
Power and Energy Engineering Conference
(
APPEEC
), Asia-Pacific, Mar. 28–31, pp.
1
4
.
26.
Ayotte
,
K. W.
,
2008
, “
Computational Modelling for Wind Energy Assessment
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1571
1590
.
27.
Chenghai
,
W.
,
Shuanglong
,
J.
,
Ju
,
H.
,
Feimin
,
Z.
,
Shuanglei
,
F.
, and
Chun
,
L.
,
2011
, “
Comparing Different Boundary Layer Schemes of WRF by Simulation the Low-Level Wind Over Complex Terrain
,”
Second International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)
, Zhengzhou, China, Aug. 8–10, pp.
6183
6188
.
28.
Prospathopoulos
,
J. M.
,
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
,
2012
, “
Application of a 3D RANS Solver on the Complex Hill of Bolund and Assessment of the Wind Flow Predictions
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
149
159
.
29.
Balogh
,
M.
,
Parente
,
A.
, and
Benocci
,
C.
,
2012
, “
RANS Simulation of ABL Flow Over Complex Terrains Applying an Enhanced k-ε Model and Wall Function Formulation: Implementation and Comparison for Fluent and OpenFOAM
,”
J. Wind Eng. Ind. Aerodyn.
,
104–106
, pp.
360
368
.
30.
Dobrev
,
I.
, and
Massouh
,
F.
,
2011
, “
CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine
,”
Energy Procedia
,
6
, pp.
711
720
.
31.
Szlivka
,
F.
,
Molnar
,
I.
,
Kajtar
,
P.
, and
Telekes
,
G.
,
2011
, “
CFX Simulations by Twin Wind Turbine
,”
International Conference on Electrical and Control Engineering (ICECE)
, pp.
5780
5783
.
32.
Dolan
,
D. S. L.
, and
Lehn
,
P. W.
,
2006
, “
Simulation Model of Wind Turbine 3p Torque Oscillations Due to Wind Shear and Tower Shadow
,”
Power Systems Conference and Exposition
, Atlanta, GA, Oct. 29–Nov. 1, pp.
2050
2057
.
33.
AlHamaydeh
,
M.
, and
Hussain
,
S.
,
2011
, “
Optimized Frequency-Based Foundation Design for Wind Turbine Towers Utilizing Soil-Structure Interaction
,”
J. Franklin Inst.
,
348
(
7
), pp.
1470
1487
.
34.
Xiaoxia
,
G.
,
Hongxiang
,
Y.
, and
Lin
,
L.
,
2016
, “
Optimization of Wind Turbine Layout Position in a Wind Farm Using a Newly-Developed Two-Dimensional Wake Model
,”
Appl. Energy
,
174
, pp.
192
200
.
35.
Park
,
J.
, and
Law
,
K. H.
,
2015
, “
Layout Optimization for Maximizing Wind Farm Power Production Using Sequential Convex Programming
,”
Appl. Energy
,
151
, pp.
320
334
.
36.
Castellani
,
F.
,
Astolfi
,
D.
,
Garinei
,
A.
,
Proietti
,
S.
,
Sdringola
,
P.
,
Terzi
,
L.
, and
Desideri
,
U.
,
2015
, “
How Wind Turbines Alignment to Wind Direction Affects Efficiency? A Case Study Through SCADA Data Mining
,”
Energy Procedia
,
75
, pp.
697
703
.
37.
Grassi
,
S.
,
Junghans
,
S.
, and
Raubal
,
M.
,
2014
, “
Assessment of the Wake Effect on the Energy Production of Onshore Wind Farms Using GIS
,”
Appl. Energy
,
136
, pp.
827
837
.
38.
Barthelmie
,
R. J.
, and
Pryor
,
S. C.
,
2013
, “
An Overview of Data for Wake Model Evaluation in the Virtual Wakes Laboratory
,”
Appl. Energy
,
104
, pp.
834
844
.
39.
Jensen
,
N. O.
,
1983
,
A Note on Wind Generator Interaction
,
Riso National Laboratory
,
Roskilde, Denmark
.
40.
Gao
,
X.
,
Yang
,
H.
,
Lin
,
L.
, and
Koo
,
P.
,
2015
, “
Wind Turbine Layout Optimization Using Multi-Population Genetic Algorithm and a Case Study in Hong Kong Offshore
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
89
99
.
41.
Tian
,
L.
,
Zhu
,
W.
,
Shen
,
W.
,
Zhao
,
N.
, and
Shen
,
Z.
,
2015
, “
Development and Validation of New Two-Dimensional Wake Model for Wind Turbine Wakes
,”
J. Wind Eng. Ind. Aerodyn.
,
137
, pp.
90
99
.
42.
Schlez
,
W.
,
Tindal
,
A.
, and
Quarton
,
D.
,
2003
,
Wind Farmer Validation Report
,
Garrad Hassan and Partners Ltd
,
Bristol, UK
.
43.
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(5), p. 051207.
44.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(5), p. 051205.
45.
Jackson
,
R. S.
,
2016
, “
Application of Reynolds Stress Model Using Direct Modeling and Actuator Disk Approaches for a Small-Scale Wind Turbine
,”
Ph.D. dissertation
, University of Wisconsin Milwaukee, Milwaukee, WI.
46.
Dantec Dynamics
,
2014
, “
Probes for Hot-Wire Anemometry
,” Dantec Dynamics, Skovlunde, Denmark, Document No. 238v12.
47.
Dantec Dynamics
,
2003
, “
User's Guide for Hot-Wire Calibrator 54H10
,” Dantec Dynamics, Skovlunde, Denmark, Document No. 9040U4401.
48.
Dantec Dynamics
,
2004
, “
Installation and User's Guide for Mini CTA 54T30
,” Dantec Dynamics, Skovlunde, Denmark, Document No. 9040U6093.
49.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
2
), pp.
412
422
.
You do not currently have access to this content.