The development process of a dipping gas reservoir with an aquifer considering stress sensitivity is complex. With gas development, formation pressure decreases, stress-sensitive effect decreases permeability and porosity, and formation water could flow into the development gas well and gather in the wellbore. The accumulation of water may lead to a lower gas rate. Simultaneously, the gravity action of fluid caused by formation dip angle affects gas well productivity. However, few studies have investigated a deliverability model for a water-producing gas well with a dipping gas reservoir considering stress sensitivity. For this reason, it is important to determine the relationships between gas well productivity and stress sensitivity, formation angle, and water production. In this research, a new mathematical model of deliverability was developed for a water-producing gas well with a dipping gas reservoir considering stress sensitivity. Additionally, a new equation was developed for gas well productivity. By analyzing a typical dipping gas reservoir with an aquifer, the level of influence on gas well productivity was determined for stress sensitivity, formation angle, and water–gas ratio (WGR). The work defined the relationships between gas well productivity and stress sensitivity, formation angle, and WGR. The results indicate that deliverability increases with an increase in formation angle, and growth rate hits its limit at an angle of 40 deg. Due to the influence of formation angle, fluid gravity leads to production pressure differences in gas wells. When bottom-hole flow pressure equaled formation pressure, gas well production was not 0 × 104 m3/d, the angle was large, and gas well production was greater. Deliverability and stress sensitivity hold a linear relationship: the stronger the stress sensitivity, the lower the deliverability of the gas well, with the stress sensitivity index from 0 to 0.06 MPa−1 and the deliverability decrease rate at 37.2%. Deliverability and WGR hold an exponential relationship: when WGR increased from 0.5 to 15.0 m3/104 m3, the deliverability decrease rate was 71.8%. The model and the equations can be used to predict gas deliverability in a dipping gas reservoir with an aquifer considering stress sensitivity. It can also be used to guide the development process for a dipping gas reservoir with an aquifer.

References

1.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
2.
Zhou
,
X.
,
Yuan
,
Q.
,
Zhang
,
Y.
,
Wang
,
H.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2019
, “
Performance Evaluation of CO2 Flooding Process in Tight Oil Reservoir Via Experimental and Numerical Simulation Studies
,”
Fuel
,
236
, pp.
730
746
.
3.
Peng
,
F.
,
Chang
,
H.
,
Ling
,
K.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
12
20
.
4.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J. Y.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy. Resour. Technol.
,
139
(
4
), p.
042901
.
5.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2016
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy. Resour. Technol.
,
139
(
1
), p.
012903
.
6.
Luis
,
F.
,
Ayala
,
H.
, and
Peng
,
Y.
,
2013
, “
Density-Based Decline Performance Analysis of Natural Gas Reservoirs Using a Universal Type Curve
,”
ASME J. Energy. Resour. Technol.
,
135
(
4
), p.
042701
.
7.
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
31
39
.
8.
Jiang
,
Y.
, and
Dahi-Taleghani
,
A.
,
2018
, “
Modified Extended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure Approach
,”
ASME J. Energy. Resour. Technol.
,
140
(
7
), p.
073101
.
9.
Yuan
,
Q.
,
Zhou
,
X.
,
Zeng
,
F.
,
Knorr
,
K. D.
, and
Imran
,
M.
,
2018
, “
Investigation of Concentration-Dependent Diffusion on Frontal Instabilities and Mass Transfer in Homogeneous Porous Media
,”
Can. J. Chem. Eng.
,
96
(
1
), pp.
323
338
.
10.
Yi
,
Y.
,
Li
,
J.
, and
Ji
,
L.
,
2017
, “
Numerical Determination of Critical Condensate Saturation in Gas Condensate Reservoirs
,”
ASME J. Energy. Resour. Technol.
,
139
(
6
), p.
062801
.
11.
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
12.
Mahmoud
,
M.
,
2017
, “
New Formulation for Sandstone Acidizing That Eliminates Sand Production Problems in Oil and Gas Sandstone Reservoirs
,”
ASME J. Energy. Resour. Technol.
,
139
(
4
), p.
042902
.
13.
Lu
,
J.
,
Ghedan
,
S.
,
Zhu
,
T.
, and
Tiab
,
D.
,
2011
, “
Non-Darcy Binomial Deliverability Equations for Partially Penetrating Vertical Gas Wells and Horizontal Gas Wells
,”
ASME J. Energy. Resour. Technol.
,
133
(
4
), p.
043101
.
14.
Zeng
,
F.
, and
Zhao
,
G.
,
2007
, “
Gas Well Production Analysis With Non-Darcy Flow and Real Gas PVT Behavior
,”
J. Pet. Sci. Eng.
,
59
(
3–4
), pp.
169
182
.
15.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2018
, “
A General Boundary Integral Solution for Fluid Flow Analysis in Reservoirs With Complex Fracture Geometries
,”
ASME J. Energy. Resour. Technol.
,
140
(
5
), p.
052907
.
16.
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
,
39
, pp.
44
53
.
17.
Zhou
,
X.
,
Yuan
,
Q.
,
Zeng
,
F.
,
Zhang
,
L.
, and
Jiang
,
S.
,
2017
, “
Experimental Study on Foamy Oil Behavior Using a Heavy Oil—Methane System in the Bulk Phase
,”
J. Pet. Sci. Eng.
,
158
, pp.
309
321
.
18.
Zhou
,
X.
,
Yuan
,
Q.
,
Peng
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2018
, “
A Critical Review of the CO2 Huff ‘n’ Puff Process for Enhanced Heavy Oil Recovery
,”
Fuel
,
215
, pp.
813
824
.
19.
Ai Ghamdi
,
B. N.
, and
Ayala
,
H. L. F.
,
2017
, “
Evaluation of Transport Properties Effect on the Performance of Gas-Condensate Reservoirs Using Compositional Simulation
,”
ASME J. Energy. Resour. Technol.
,
139
(
3
), p.
032910
.
20.
Yuan
,
Q.
,
Yao
,
S.
,
Zhou
,
X.
,
Zeng
,
F.
,
Knorr
,
K. D.
, and
Imran
,
M.
,
2017
, “
Miscible Displacements With Concentration-Dependent Diffusion and Velocity-Induced Dispersion in Porous Media
,”
J. Pet. Sci. Eng.
,
159
, pp.
344
359
.
21.
Cui
,
K.
,
Wang
,
X.
,
Chun
,
J.
,
Li
,
Y.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Comprehensive Investigation on Performance of Oil and Gas Development in Nigeria: Technical and Non-Technical Analyses
,”
Energy
,
158
, pp.
666
680
.
22.
Guo
,
T.
,
Li
,
Y.
,
Ding
,
Y.
,
Qu
,
Z.
, and
Gai
,
N.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuel
,
31
(
10
), pp.
10479
10489
.
23.
Yang
,
Y.
, and
Wen
,
Q.
,
2017
, “
Numerical Simulation of Gas-Liquid Two-Phase Flow in Channel Fracture Pack
,”
J. Nat. Gas Sci. Eng.
,
17
, pp.
33
47
.
24.
Cui
,
K.
,
Qian
,
Y.
,
Jeon
,
I.
,
Anisimonv
,
A.
,
Matsuo
,
Y.
,
Kauppinen
,
I. E.
, and
Maruyama
,
S.
,
2017
, “
Scalable and Solid-State Redox Functionalization of Transparent Single-Walled Carbon Nanotube Films for Highly Efficient and Stable Solar Cells
,”
Adv. Energy Mater.
,
7
(
18
), p.
1700449
.
25.
Wang
,
J.
,
2012
, “
Well Completion for Effective Deliquification of Natural Gas Wells
,”
ASME J. Energy. Resour. Technol.
,
134
(
1
), p.
013102
.
26.
Zhou
,
X.
,
Zeng
,
F.
,
Zhang
,
L.
, and
Wang
,
H.
,
2016
, “
Foamy Oil Flow in Heavy Oil-Solvent Systems Tested by Pressure Depletion in a Sandpack
,”
Fuel
,
171
, pp.
210
223
.
27.
Cui
,
G.
,
Ren
,
S.
,
Rui
,
Z.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2018
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
,
227
, pp.
49
63
.
28.
Li
,
Y.
,
Xiao
,
F.
,
Xu
,
W.
, and
Wang
,
J.
,
2016
, “
Performance Evaluation on Water Producing Gas Wells Based on Gas and Water Relative Permeability Curves: A Case Study of Tight Sandstone Gas Reservoirs in the Sulige Gas Field Ordos Basin
,”
Nat. Gas Ind. B
, (
1
), pp.
52
58
.
29.
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
30.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai
,
J.
, and
Ren
,
J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
31.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
527
548
.
32.
Tong
,
Z.
,
Zhao
,
G.
, and
Wei
,
S.
,
2017
, “
A Novel Intermittent Gas Lifting and Monitoring System Toward Liquid Unloading for Deviated Wells in Mature Gas Field
,”
ASME J. Energy. Resour. Technol.
,
140
(
5
), p.
052906
.
33.
Zhou
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2016
, “
Improving Steam-Assisted Gravity Drainage Performance in Oil Sands With a Top Water Zone Using Polymer Injection and the Fishbone Well Pattern
,”
Fuel
,
184
, pp.
449
465
.
34.
Yuan
,
Q.
,
Zhou
,
X.
,
Zeng
,
F.
,
Knorr
,
K. D.
, and
Imran
,
M.
,
2017
, “
Nonlinear Simulation of Miscible Displacements With Concentration-Dependent Diffusion Coefficient in Homogeneous Porous Media
,”
Chem. Eng. Sci.
,
172
, pp.
528
544
.
35.
Qanbari
,
F.
, and
Clarkson
,
C.
,
2013
, “
Analysis of Transient Linear Flow in Stress-Sensitive Formations
,”
SPE Reservoir Eval. Eng.
,
17
(
1
), pp.
98
104
.
36.
Zhang
,
S.
,
Xian
,
X.
,
Zhou
,
J.
,
Liu
,
G.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Lu
,
Z.
,
2017
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME J. Energy. Resour. Technol.
,
140
(
5
), p.
054502
.
37.
Wang
,
L.
,
Wang
,
X.
,
Ding
,
X.
,
Zhang
,
L.
, and
Li
,
C.
,
2012
, “
Rate Decline Curves Analysis of a Vertical Fractured Well With Fracture Face Damage
,”
ASME J. Energy. Resour. Technol.
,
134
(
3
), p.
032803
.
38.
Shaoul
,
J.
,
Ayush
,
A.
,
Park
,
J.
, and
Pater
,
C.
,
2015
, “
The Effect of Stress Sensitive Permeability Reduction on the Evaluation of Post-Fracture Well tests in Tight Gas and Unconventional Reservoirs
,”
SPE European Formation Damage Conference and Exhibition
, Budapest, Hungary, June 3–5, SPE Paper No. SPE-174187-MS.
39.
Zhou
,
D.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy. Resour. Technol.
,
137
(
6
), p.
062902
.
40.
Mostafa
,
M.
,
Amir
,
S.
,
Mohsen
,
A.
, and
Dezfuli
,
A.
,
2017
, “
Three Dimensional Pressure Transient Behavior Study in Stress Sensitive Reservoirs
,”
J. Pet. Sci. Eng.
,
152
, pp.
204
211
.
41.
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Shirish
,
P.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
42.
Andrew
,
J.
,
Kondash
,
E.
, and
Vengosh
,
A.
,
2017
, “
Quantity of Flowback and Produced Waters From Unconventional Oil and Gas Exploration
,”
Sci. Total Environ.
,
574
, pp.
314
321
.
43.
Fang
,
Y.
, and
Yang
,
B.
,
2009
, “
Application of New Pseudo-Pressure for Deliverability Test Analysis in Stress-Sensitivity Gas Reservoir
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
, Jakarta, Indonesia, Aug. 4–6, SPE Paper No.
SPE-120141-MS
.
44.
Huang
,
X.
,
Guo
,
X.
,
Lu
,
X.
,
Zhou
,
X.
,
Qi
,
Z.
,
Yan
,
W.
, and
Li
,
J.
,
2018
, “
Mathematical Model Study on the Damage of Liquid Phase to Productivity in Gas Reservoir With an Aquifer
,”
Petroleum
,
4
(
2
), pp.
209
214
.
45.
Zaghloul
,
J.
,
Adewumi
,
M.
, and
Ityokumbul
,
M. T.
,
2008
, “
Hydrodynamic Modeling of Three-Phase Flow in Production and Gathering Pipelines
,”
ASME J.Energy. Resour. Technol.
,
130
(
4
), p.
043004
.
46.
Sabti
,
M.
,
Alizadeh
,
A.
, and
Piri
,
M.
,
2016
, “
Three-Phase Flow in Fractured Porous Media: Experimental Investigation of Matrix-Fracture Interactions
,”
SPE Annual Technical Conference and Exhibition
, Dubai, UAE, Sept. 26–28, SPE Paper No.
SPE-181891-MS
.
47.
Orozco
,
D.
, and
Aguilera
,
R.
,
2017
, “
A Material-Balance Equation for Stress-Sensitive Shale-Gas-Condensate Reservoirs
,”
SPE Reservoir Eval. Eng.
,
20
(
1
), pp. 197–214.
48.
Huang
,
Y.
,
Cheng
,
S.
,
Yu
,
H.
,
He
,
Y.
,
Lin
,
B.
, and
Feng
,
N.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
J. Pet. Sci. Eng.
,
150
, pp.
85
90
.
49.
Cui
,
G.
,
Wang
,
Y.
,
Chen
,
B.
,
Ren
,
S.
, and
Zhang
,
L.
,
2018
, “
Assessing the Combined Influence of Fluid-Rock Interactions on Reservoir Properties and Injectivity During CO2 Storage in Saline Aquifers
,”
Energy
,
155
(
15
), pp.
281
296
.
50.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy. Resour. Technol.
,
140
(
10
), p.
102905
.
51.
Liu
,
S.
,
Wang
,
J.
,
He
,
H.
, and
Wang
,
H.
,
2018
, “
Mechanism on Imbibition of Fracturing Fluid in Nanopore
,”
Nanosci. Nanotechnol. Lett.
,
10
(
1
), pp.
87
93
.
You do not currently have access to this content.