In the current study, the effects of the nonlocally generated long sea surface waves (swells) on the power production of a 2 × 2 wind farm are investigated by using large-eddy simulations (LES) and actuator-line method (ALM). The short sea waves are modeled as a roughness height, while the wave-induced stress accounting for swell effects is added as an external source term to the momentum equations. The results show that the marine atmospheric boundary layers (MABLs) obtained in this study have similar characteristics as the MABLs observed during the swell conditions by many other studies. The current results indicate also that swells have significant impacts on the MABL. As a consequence of these changes in the MABL, swells moving faster than the wind and aligned with the local wind direction increase the power extraction rate.

References

1.
Al Sam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2014
, “
The Effect of Moving Waves on Neutral Marine Atmospheric Boundary Layer
,”
ITM Web Conf.
,
2
, p.
01003
.
2.
AlSam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2015
, “
The Influence of Sea Waves on Offshore Wind Turbine Aerodynamics
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051209
.
3.
Sullivan
,
P.
,
Edson
,
J.
,
Hristov
,
T.
, and
McWilliams
,
J.
,
2008
, “
Large-Eddy Simulations and Observations of Atmospheric Marine Boundary Layers Above Nonequilibrium Surface Waves
,”
J. Atmos. Sci.
,
65
(
4
), pp.
1225
1245
.
4.
Sullivan
,
P. P.
,
McWilliams
,
J. C.
, and
Moeng
,
C.-H.
,
2000
, “
Simulation of Turbulent Flow Over Idealized Water Waves
,”
J. Fluid Mech.
,
404
, pp.
47
85
.
5.
Nilsson
,
E. O.
,
Rutgersson
,
A.
,
Smedman
,
A.-S.
, and
Sullivan
,
P. P.
,
2012
, “
Convective Boundary-Layer Structure in the Presence of Wind-Following Swell
,”
Q. J. R. Meteorol. Soc.
,
138
(
667
), pp.
1476
1489
.
6.
Semedo
,
A.
,
Sušeli
,
K.
,
Rutgersson
,
A.
, and
Sterl
,
A.
,
2011
, “
A Global View on the Wind Sea and Swell Climate and Variability From ERA-40
,”
J. Clim.
,
24
(
5
), pp.
1461
1479
.
7.
Hanley
,
K. E.
,
Belcher
,
S. E.
, and
Sullivan
,
P. P.
,
2010
, “
A Global Climatology of Wind–Wave Interaction
,”
J. Phys. Oceanogr.
,
40
(
6
), pp.
1263
1282
.
8.
Chen
,
G.
,
Chapron
,
B.
,
Ezraty
,
R.
, and
Vandemark
,
D.
,
2002
, “
A Global View of Swell and Wind Sea Climate in the Ocean by Satellite Altimeter and Scatterometer
,”
J. Atmos. Oceanic Technol.
,
19
(
11
), pp.
1849
1859
.
9.
Ivanell
,
S.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
, and
Henningson
,
D.
,
2008
, “
Three-Dimensional Actuator Disc Modelling of Wind Farm Wake Interaction
,”
European Wind Energy Conferences and Exhibition
(
EWEC
), Brussels, Belgium, Mar. 31–Apr. 3, pp. 3038–3047.
10.
Deardorff
,
J.
,
1980
, “
Stratocumulus-Capped Mixed Layers Derived From a Three-Dimensional Model
,”
Boundary-Layer Meteorol.
,
18
(
4
), pp.
495
527
.
11.
Moeng
,
C.-H.
, and
Wyngaard
,
J. C.
,
1988
, “
Spectral Analysis of Large-Eddy Simulations of Convective Boundary Layer
,”
J. Atmos. Sci.
,
45
(
23
), pp.
3573
3587
.
12.
Sullivan
,
P. P.
, and
McWilliams
,
J. C.
,
2010
, “
Dynamics of Winds and Currents Coupled to Surface Waves
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
19
42
.
13.
Semedo
,
A.
,
Saetra
,
Ø.
,
Rutgersson
,
A.
,
Kahma
,
K. K.
, and
Pettersson
,
H.
,
2009
, “
Wave-Induced Wind in the Marine Boundary Layer
,”
J. Atmos. Sci.
,
66
(
8
), pp.
2256
2271
.
14.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” Technical Report No.
NREL/TP-500-38060
.
15.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.
16.
Churchfield
,
M.
,
2011
, “
Wind Energy/Atmospheric Boundary Layer Tools and Tutorials
,”
Sixth OpenFOAM Workshop
, State College, PA, June 13–16, pp. 1–70.
17.
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2010
, “
Wind Energy-Related Atmospheric Boundary-Layer Large-Eddy Simulation Using OpenFOAM
,” Technical Report No.
NREL CP-500-48905
.
18.
Lee
,
S.
,
Churchfield
,
M.
,
Moriarty
,
P.
,
Jonkman
,
J.
, and
Michalakes
,
J.
,
2011
, “
Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading
,” Technical Report No.
NREL CP-5000-53567
.
19.
Churchfield
,
M. J.
,
Lee
,
S.
,
Moriarty
,
P.
,
Martinez
,
L. A.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2012
, “
A Large-Eddy Simulation of Wind-Plant Aerodynamics
,” Technical Report No.
NREL CP-5000-53554
.
20.
Hanley
,
K.
, and
Belcher
,
S.
,
2008
, “
Wave-Driven Wind Jets in the Marine Atmospheric Boundary Layer
,”
J. Atmos. Sci.
,
65
(
8
), pp.
2646
2660
.
21.
Högström
,
U.
,
Smedman
,
A.
,
Sahlée
,
E.
,
Drennan
,
W.
,
Kahma
,
K.
,
Pettersson
,
H.
, and
Zhang
,
F.
,
2009
, “
The Atmospheric Boundary Layer During Swell: A Field Study and Interpretation of the Turbulent Kinetic Energy Budget for High Wave Ages
,”
J. Atmos. Sci.
,
66
(
9
), pp.
2764
2779
.
22.
Smedman
,
A.
,
Tjernström
,
M.
, and
Högström
,
U.
,
1994
, “
The Near-Neutral Marine Atmospheric Boundary Layer With No Surface Shearing Stress: A Case Study
,”
J. Atmos. Sci.
,
51
(
23
), pp.
3399
3411
.
23.
Smedman
,
A.-S.
,
Högström
,
U.
, and
Bergström
,
H.
,
1997
, “
The Turbulence Regime of a Very Stable Marine Airflow With Quasi-Frictional Decoupling
,”
J. Geophys. Res.
,
102
(C9), pp.
21049
21059
.
24.
Smedman
,
A.
,
Tjernström
,
S.
,
Högström
,
U.
, Bergström, H.,
Rutgersson
,
A.
,
Kahma
,
K. K.
, and
Pettersson
,
H.
,
1999
, “
A Case Study of Air-Sea Interaction During Swell Conditions
,”
J. Geophys. Res.
,
104
(C11), pp.
25833
25851
.
25.
Smedman
,
A.
,
Tjernström
,
M.
, and
Sjöblom
,
A.
,
2003
, “
A Note on Velocity Spectra in the Marine Boundary Layer
,”
Boundary-Layer Meteorol.
,
109
(
1
), pp.
27
48
.
26.
Smedman
,
A.
,
Högström
,
U.
, and
Sahlée
,
E.
,
2009
, “
Observational Study of Marine Atmospheric Boundary Layer Characteristics During Swell
,”
J. Atmos. Sci.
,
66
(
9
), pp.
2747
2763
.
27.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
28.
Wagner
,
R.
,
Courtney
,
M.
,
Gottschall
,
J.
, and
Lindelöw-Marsden
,
P.
,
2011
, “
Accounting for the Speed Shear in Wind Turbine Power Performance Measurement
,”
Wind Energy
,
14
(
8
), pp.
993
1004
.
You do not currently have access to this content.