In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both rotors are three-bladed and designed using blade element/lifting line (BE/LL) optimum theory at a tip-speed ratio, λ, of 5 with a constant design lift coefficient along the span, CL = 0.8. Measurements of the rotor characteristics were conducted by strain sensors installed in the rotor mounting. The resulting power capacity has been studied and analyzed at different rotor positions and a range of tip-speed ratios from 2 to 8, and a simple algebraic relationship between the velocity deficit in the wake of the front turbine and the power of the second turbine was found, when both rotors have the coaxial position.

References

1.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
2.
van Kuik
,
G. A. M.
,
Sørensen
,
J. N.
, and
Okulov
,
V. L.
,
2015
, “
Rotor Theories by Professor Joukowsky: Momentum Theories
,”
Prog. Aerosp. Sci.
,
73
, pp.
1
18
.
3.
Okulov
,
V. L.
,
Sørensen
,
J. N.
, and
Wood
,
D. H.
,
2015
, “
The Rotor Theories by Professor Joukowsky: Vortex Theories
,”
Prog. Aerosp. Sci.
,
73
, pp.
19
46
.
4.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
5.
Matt
,
A. K. K.
,
Strong
,
S.
,
ElGammal
,
T.
, and
Amano
,
R. S.
,
2015
, “
Development of Novel Self-Healing Polymer Composites for Use in Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051202
.
6.
Okulov
,
V. L.
,
Mikkelsen
,
R. F.
,
Litvinov
,
I. V.
, and
Naumov
,
I. V.
,
2015
, “
Efficiency of Operation of Wind Turbine Rotors Optimized by the Glauert and Betz Methods
,”
Tech. Phys.
,
60
(
11
), pp.
1632
1636
.
7.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
8.
Sunden
,
B.
, and
Wu
,
Z.
,
2015
, “
On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051203
.
9.
Porte-Agel
,
F.
,
Wu
,
Y. T.
, and
Chen
,
C. H.
,
2013
, “
A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm
,”
Energies
,
6
(
10
), pp.
5297
5313
.
10.
Esteban
,
M. D.
,
López-Gutiérrez
,
J.-S.
,
Negro
,
V.
,
Matutano
,
C.
,
García-Flores
,
F. M.
, and
Millán
,
M. Á.
,
2015
, “
Offshore Wind Foundation Design: Some Key Issues
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051211
.
11.
Nygaard
,
N. G.
,
2014
, “
Wakes in Very Large Wind Farms and the Effect of Neighbouring Wind Farms
,”
J. Phys.: Conf. Ser.
,
524
, p.
012162
.
12.
Matutano
,
C.
,
Negro
,
V.
,
López-Gutiérrez
,
J.-S.
, and
Esteban
,
M. D.
,
2015
, “
Design of Scour Protection Systems in Offshore Wind Farms
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051204
.
13.
Troldborg
,
N.
,
Larsen
,
G. C.
,
Madsen
,
H. A.
,
Hansen
,
K. S.
,
Sørensen
,
J. N.
, and
Mikkelsen
,
R.
,
2011
, “
Numerical Simulations of Wake Interaction Between Two Wind Turbines at Various Inflow Conditions
,”
Wind Energy
,
14
(
7
), pp.
859
876
.
14.
Bartl
,
J.
,
Pierella
,
F.
, and
Sætran
,
L.
,
2012
, “
Wake Measurements Behind an Array of Two Model Wind Turbines
,”
Energy Proc.
,
24
, pp.
305
312
.
15.
Mycek
,
P.
,
Gaurier
,
B.
,
Germain
,
G.
,
Pinon
,
G.
, and
Rivoalen
,
E.
,
2013
, “
Numerical and Experimental Study of the Interaction Between Two Marine Current Turbines
,”
Int. J. Mar. Energy
,
1
, pp.
70
83
.
16.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
17.
Okulov
,
V. L.
,
Naumov
,
I. V.
,
Mikkelsen
,
R. F.
,
Kabardin
,
I. K.
, and
Sørensen
,
J. N.
,
2014
, “
A Regular Strouhal Number for Large-Scale Instability in the Far Wake of a Rotor
,”
J. Fluid Mech.
,
747
, pp.
369
380
.
18.
Naumov
,
I. V.
,
Mikkelsen
,
R. F.
, and
Okulov
,
V. L.
,
2016
, “
Estimation of Wake Propagation Behind the Rotors of Wind-Powered Generators
,”
Therm. Eng.
,
63
(
3
), pp.
208
213
.
19.
Okulov
,
V. L.
,
Naumov
,
I. V.
,
Mikkelsen
,
R. F.
, and
Sørensen
,
J. N.
,
2015
, “
Wake Effect on a Uniform Flow Behind Wind-Turbine Model
,”
J. Phys.: Conf. Ser.
,
625
, p.
012011
.
20.
Barthelmie
,
R. J.
,
Hansen
,
K.
,
Frandsen
,
S. T.
,
Rathmann
,
O.
,
Schepers
,
J. G.
,
Schlez
,
W.
,
Phillips
,
J.
,
Rados
,
K.
,
Zervos
,
A.
,
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
,
2009
, “
Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore
,”
Wind Energy
,
12
(
5
), pp.
431
444
.
21.
Naumov
,
I. V.
,
Mikkelsen
,
R. F.
,
Okulov
,
V. L.
, and
Sørensen
,
J. N.
,
2014
, “
PIV and LDA Measurements of the Wake Behind a Wind Turbine Model
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p.
012168
.
22.
Naumov
,
I. V.
,
Rakhmanov
,
V. V.
,
Okulov
,
V. L.
,
Velta
,
K. M.
,
Mayer
,
K. E.
, and
Mikkelsen
,
R. F.
,
2012
, “
Flow Diagnostics Downstream of a Tribladed Rotor Model
,”
Thermophys. Aeromech.
,
19
(
2
), pp.
268
278
.
23.
Sørensen
,
J. N.
,
Okulov
,
V. L.
,
Mikkelsen
,
R. F.
,
Naumov
,
I. V.
, and
Litvinov
,
I. V.
,
2016
, “
Comparison of Classical Methods for Blade Design and the Influence of Tip Correction on Rotor Performance
,”
J. Phys.: Conf. Ser.
,
753
(
2
), p.
022020
.
24.
Breton
,
S. P.
,
Nilsson
,
K.
,
Olivares-Espinosa
,
H.
,
Masson
,
C.
,
Dufresne
,
L.
, and
Ivanell
,
S.
,
2014
, “
Study of the Influence of Imposed Turbulence on the Asymptotic Wake Deficit in a Very Long Line of Wind Turbines
,”
Renewable Energy
,
70
, pp.
153
163
.
You do not currently have access to this content.