History matching is essential for estimating reservoir performances and decision makings. Ensemble Kalman filter (EnKF) has been researched for inverse modeling due to lots of advantages such as uncertainty quantification, real-time updating, and easy coupling with any forward simulator. However, it requires lots of forward simulations due to recursive update. Although ensemble smoother (ES) is much faster than EnKF, it is more vulnerable to overshooting and filter divergence problems. In this research, ES is coupled with both clustered covariance and selective measurement data to manage the two typical problems mentioned. As preprocessing work of clustered covariance, reservoir models are grouped by the distance-based method, which consists of Minkowski distance, multidimensional scaling, and K-means clustering. Also, meaningless measurement data are excluded from assimilation such as shut-in bottomhole pressures, which are too similar on every well. For a benchmark model, PUNQ-S3, a standard ES with 100 ensembles, shows severe over- and undershooting problem with log-permeability values from 36.5 to −17.3. The concept of the selective use of observed data partially mitigates the problem, but it cannot match the true production. However, the proposed method, ES with clustered covariance and selective measurement data together, manages the overshooting problem and follows histogram of the permeability in the reference field. Uncertainty quantifications on future field productions give reliable prediction, containing the true performances. Therefore, this research extends the applicatory of ES to 3D reservoirs by improving reliability issues.

References

1.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
J. Basic Eng.
,
82
(
1
), pp.
35
45
.
2.
Evensen
,
G.
,
1994
, “
Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
,
99
(C
5
), pp.
10143
10162
.
3.
Nævdal
,
G.
,
Mannseth
,
T.
, and
Vefring
,
E. H.
,
2002
, “
Near-Well Reservoir Monitoring Through Ensemble Kalman Filter
,”
SPE/DOE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 13–17, Paper No. SPE 75235.
4.
Zhang
,
Y.
, and
Yang
,
D.
,
2013
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure for Tight Formations Using Ensemble-Based History Matching Method
,”
Comput. Fluids
,
71
(
1
), pp.
446
460
.
5.
Zhang
,
Y.
,
Li
,
H.
, and
Yang
,
D.
,
2012
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure Using Ensemble-Based History Matching Technique
,”
Transp. Porous Media
,
94
(
1
), pp.
259
276
.
6.
Zhang
,
Y.
, and
Yang
,
D.
,
2014
, “
Estimation of Relative Permeability and Capillary Pressure for Tight Formations by Assimilating Field Production Data
,”
Inverse Probl. Sci. Eng.
,
22
(
7
), pp.
1150
1175
.
7.
Zhang
,
Y.
,
Song
,
C.
, and
Yang
,
D.
,
2016
, “
A Damped Iterative EnKF Method to Estimate Relative Permeability and Capillary Pressure for Tight Formations From Displacement Experiments
,”
Fuel
,
167
, pp.
306
315
.
8.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2005
, “
The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp.
79
87
.
9.
Aanonsen
,
S. I.
,
Nævdal
,
G.
,
Oliver
,
D. S.
,
Reynolds
,
A. C.
, and
Vallès
,
B.
,
2009
, “
The Ensemble Kalman Filter in Reservoir Engineering—A Review
,”
SPE J.
,
14
(
3
), pp.
393
412
.
10.
Oliver
,
D. S.
, and
Chen
,
Y.
,
2011
, “
Recent Progress on Reservoir History Matching: A Review
,”
Comput. Geosci.
,
15
(
1
), pp.
185
221
.
11.
Jung
,
S.
, and
Choe
,
J.
,
2010
, “
Stochastic Estimation of Oil Production by History Matching With Ensemble Kalman Filter
,”
Energy Sources, Part A
,
32
(
10
), pp.
952
961
.
12.
Yeo
,
M. J.
,
Jung
,
S. P.
, and
Choe
,
J.
,
2014
, “
Covariance Matrix Localization Using Drainage Area in an Ensemble Kalman Filter
,”
Energy Sources, Part A
,
36
(
19
), pp.
2154
2165
.
13.
Park
,
K.
, and
Choe
,
J.
,
2006
, “
Use of Ensemble Kalman Filter With 3-Dimensional Reservoir Characterization During Waterflooding
,”
SPE EUROPEC/EAGE Annual Conference and Exhibition
, Vienna, Austria, Jun. 12–15, Paper No. SPE 100178.
14.
Lee
,
K.
,
Jung
,
S.
,
Shin
,
H.
, and
Choe
,
J.
,
2014
, “
Uncertainty Quantification of Channelized Reservoir Using Ensemble Smoother With Selective Measurement Data
,”
Energy Explor. Exploit.
,
32
(
5
), pp.
805
816
.
15.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Reservoir Characterization With the Discrete Cosine Transform
,”
SPE J.
,
14
(
1
), pp.
182
201
.
16.
Shin
,
Y.
,
Jeong
,
H.
, and
Choe
,
J.
,
2010
, “
Reservoir Characterization Using an EnKF and a Non-Parametric Approach for Highly Non-Gaussian Permeability Fields
,”
Energy Sources, Part A
,
32
(
16
), pp.
1569
1578
.
17.
Panwar
,
W.
,
Trivedi
,
J. J.
, and
Nejadi
,
S.
,
2015
, “
Importance of Distributed Temperature Sensor Data for Steam Assisted Gravity Drainage Reservoir Characterization and History Matching Within Ensemble Kalman Filter Framework
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042902
.
18.
Kim
,
S.
,
Lee
,
C.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Characterization of Channelized Gas Reservoirs Using Ensemble Kalman Filter With Application of Discrete Cosine Transformation
,”
Energy Explor. Exploit.
,
34
(
2
), pp.
319
336
.
19.
Van Leeuwen
,
P. J.
, and
Evensen
,
G.
,
1996
, “
Data Assimilation and Inverse Methods in Terms of a Probabilistic Formulation
,”
Mon. Weather Rev.
,
124
(
12
), pp.
2898
2913
.
20.
Skjervheim
,
J.-A.
, and
Evensen
,
G.
,
2011
, “
An Ensemble Smoother for Assisted History Matching
,”
SPE Reservoir Simulation Symposium
, The Woodlands, TX, Feb. 21–23,
SPE
Paper No. 141929.
21.
Chen
,
Y.
, and
Oliver
,
D. S.
,
2012
, “
Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother
,”
Math. Geosci.
,
44
(
1
), pp.
1
26
.
22.
Emerick
,
A. A.
, and
Reynolds
,
A. C.
,
2013
, “
Ensemble Smoother With Multiple Data Assimilation
,”
Comput. Geosci.
,
55
, pp.
3
15
.
23.
Lee
,
K.
,
Jo
,
G.
, and
Choe
,
J.
,
2011
, “
Improvement of Ensemble Kalman Filter for Improper Initial Ensembles
,”
Geosyst. Eng.
,
14
(
2
), pp.
79
84
.
24.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S.
, and
Choe
,
J.
,
2013
, “
Characterization of Channelized Reservoir Using Ensemble Kalman Filter With Cluster Covariance
,”
Energy Explor. Exploit.
,
31
(
1
), pp.
17
29
.
25.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S.
, and
Choe
,
J.
,
2013
, “
Improvement of Ensemble Smoother With Clustered Covariance for Channelized Reservoirs
,”
Energy Explor. Exploit.
,
31
(
5
), pp.
713
726
.
26.
Kang
,
B.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Improvement of Ensemble Smoother With SVD-Assisted Sampling Scheme
,”
J. Pet. Sci. Eng.
,
141
, pp.
114
124
.
27.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2005
, “
History Matching of the PUNQ-S3 Reservoir Model Using the Ensemble Kalman Filter
,”
SPE J.
,
10
(
2
), pp.
217
224
.
28.
Gao
,
G.
,
Zafari
,
M.
, and
Reynolds
,
A. C.
,
2006
, “
Quantifying Uncertainty for the PUNQ-S3 Problem in a Bayesian Setting With RML and EnKF
,”
SPE J.
,
11
(
4
), pp.
506
515
.
29.
Li
,
H.
, and
Yang
,
D.
,
2011
, “
Estimation of Multiple Petrophysical Parameters for the PUNQ-S3 Model Using Ensemble-Based History Matching
,”
SPE EUROPEC/EAGE Annual Conference and Exhibition
, Vienna, Austria, May 23–26,
SPE
Paper No. 143583.
30.
Suzuki
,
S.
, and
Caers
,
J.
,
2008
, “
A Distance-Based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems
,”
Math. Geosci.
,
40
(
4
), pp.
445
469
.
31.
Lim
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2014
, “
Features Modeling of Oil Sands Reservoirs in Metric Space
,”
Energy Sources, Part A
,
36
(
24
), pp.
2725
2735
.
32.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
33.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2015
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012906
.
34.
Floris
,
F. J. T.
,
Bush
,
M. D.
,
Cuypers
,
M.
,
Roggero
,
F.
, and
Syversveen
,
A.-R.
,
2001
, “
Methods for Quantifying the Uncertainty of Production Forecasts: A Comparative Study
,”
Pet. Geosci.
,
7
, pp.
S87
S96
.
You do not currently have access to this content.