This study reports a chemical kinetics soot model for combustion of engine-relevant fuels. The scheme accounts for both low- and high-temperature oxidation, considering their crucial role in engine combustion process. The mechanism is validated against several ignition delay times and laminar burning velocities data sets for single and mixtures of hydrocarbons. To assess the mechanism ability to predict soot precursors, formation of aromatic and aliphatic species with critical effects on soot formation is investigated for several laminar premixed and diffusion flames. The model includes soot particle inception, surface growth, coagulation, and aggregation based on the method of moments. The performance of the model is evaluated by predicting the amount of produced soot during heavy alkanes and aromatic species mixtures pyrolysis. The results are encouraging, proving this methodology to be a suitable tool to simulate the all-round combustion features of engine fuel surrogates by a single reaction model.

References

1.
Lippmann
,
M.
,
Ito
,
K.
,
Nadas
,
A.
, and
Burnett
,
R. T.
,
2000
, “
Association of Particulate Matter Components With Daily Mortality and Morbidity in Urban Populations
,” Research Report No. 95, Health Effects Institute, Cambridge, MA.
2.
Wichmann
,
H. E.
,
Spix
,
C.
,
Tuch
,
T.
,
Woelke
,
G.
,
Peters
,
A.
,
Heinrich
,
J.
,
Kreyling
,
W. G.
, and
Heyder
,
J.
,
2000
, “
Daily Mortality and Fine and Ultrafine Particles in Erfurt, Germany—Part I, Role of Particle Number and Particle Mass
,” Research Report No. 98, Health Effects Institute, Cambridge, MA.
3.
Roy
,
M. M.
,
2007
, “
Charcoal-Adsorption, Water-Washing, and Air-Dilution Systems to Reduce Diesel Emissions With Special Emphasis on Odor Reduction
,”
ASME J. Energy Resour. Technol.
,
129
, pp.
338
347
.10.1115/1.2794769
4.
Roy
,
M. M.
,
2008
, “
Normal Heptane-Diesel Combustion and Odorous Emissions in Direct Injection Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
130
, p.
011101
.10.1115/1.2824295
5.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
, p.
032201
.10.1115/1.3185346
6.
Yoon
,
S. H.
,
Park
,
S. H.
,
Suh
,
S. K.
, and
Lee
,
C. S.
,
2009
, “
Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
131
, p.
012202
.10.1115/1.3068345
7.
Gollahalli
,
S. R.
, and
Puri
,
R.
,
1992
, “
Flame Structure and Pollutant Emission Characteristics of a Burning Kerosene Spray With Injection of Diluents
,”
ASME J. Energy Resour. Technol.
,
114
, pp.
209
214
.10.1115/1.2905943
8.
Love
,
N. D.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2009
, “
Rapid Characterization of Radiation and Pollutant Emissions of Biodiesel and Hydrocarbon Liquid Fuels
,”
ASME J. Energy Resour. Technol.
,
131
, p.
012202
.10.1115/1.3068345
9.
Haynes
,
B. S.
, and
Wagner
,
H. G.
,
1981
, “
Soot Formation
,”
Prog. Energy Combust. Sci.
,
7
, pp.
229
273
.10.1016/0360-1285(81)90001-0
10.
Appel
,
J.
,
Bockhorn
,
H.
, and
Frenklach
,
M.
,
2000
, “
Kinetic Modeling of Soot Formation With Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons
,”
Combust. Flame
,
121
, pp.
122
136
.10.1016/S0010-2180(99)00135-2
11.
Schuetz
,
C. A.
, and
Frenklach
,
M.
,
2002
, “
Nucleation of Soot: Molecular Dynamics Simulations of Pyrene Dimerization
,”
Proc. Combust. Inst.
,
29
, pp.
2307
2314
.10.1016/S1540-7489(02)80281-4
12.
Frenklach
,
M.
, and
Wang
,
H.
,
1991
, “
Detailed Modeling of Soot Particle Nucleation and Growth
,”
Proc. Combust. Inst.
,
23
, pp.
1559
1566
.10.1016/S0082-0784(06)80426-1
13.
Frenklach
,
M.
,
2002
, “
Reaction Mechanism of Soot Formation in Flames
,”
Phys. Chem. Chem. Phys.
,
4
, pp.
2028
2037
.10.1039/b110045a
14.
Kazakov
,
A.
, and
Frenklach
,
M.
,
1998
, “
Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames
,”
Combust. Flame
,
114
, pp.
484
501
.10.1016/S0010-2180(97)00322-2
15.
Frenklach
,
M.
,
2002
, “
Method of Moments With Interpolative Closure
,”
Chem. Eng. Sci.
,
57
, pp.
2229
2239
.10.1016/S0009-2509(02)00113-6
16.
Patterson
,
R.
, and
Kraft
,
M.
,
2007
, “
Models for the Aggregate Structure of Soot Particles
,”
Combust. Flame
,
151
, pp.
160
172
.10.1016/j.combustflame.2007.04.012
17.
Mueller
,
M.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2009
, “
A Joint Volume-Surface Model of Soot Aggregation With the Method of Moments
,”
Proc. Combust. Inst.
,
32
, pp.
785
792
.10.1016/j.proci.2008.06.207
18.
Blanquart
,
G.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Chemical Mechanism for High Temperature Combustion of Engine Relevant Fuels With Emphasis on Soot Precursors
,”
Combust. Flame
,
156
, pp.
588
607
.10.1016/j.combustflame.2008.12.007
19.
Chen
,
W.
,
Shuai
,
S.
, and
Wang
,
J.
,
2009
, “
A Soot Formation Embedded Reduced Reaction Mechanism for Diesel Surrogate Fuel
,”
Fuel
,
88
, pp.
1927
1936
.10.1016/j.fuel.2009.03.039
20.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1984
. “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Prog. Energy. Combust. Sci.
,
10
, pp.
1
57
.10.1016/0360-1285(84)90118-7
21.
Frenklach
,
M.
,
Clary
,
D. W.
,
Yuan
,
T. C.
,
Gardiner
,
W.
, and
Stein
,
S. E.
,
1986
, “
Mechanism of Soot Formation in Acetylene-Oxygen Mixtures
,”
Combust. Sci. Technol.
,
50
, pp.
79
115
.10.1080/00102208608923927
22.
Frenklach
,
M.
, and
Warnatz
,
J.
,
1987
, “
Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame
,”
Combust. Sci. Technol.
,
51
, pp.
265
283
.10.1080/00102208708960325
23.
Babushok
,
V. I.
, and
Tsang
,
W.
,
2004
, “
Kinetic Modeling of Heptane Combustion and PAH Formation
,”
J. Propul. Power
,
20
, pp.
403
414
.10.2514/1.2323
24.
Farrell
,
J. T.
,
Cernanski
,
N. P.
,
Dryer
,
F. L.
,
Friend
,
D. G.
,
Hergart
,
C. A.
,
Law
,
C. K.
,
Mueller
,
R. M. M. C. J.
,
Patel
,
A. K.
, and
Pitsch
,
H.
,
2007
, “
Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels
,”
SAE Paper No. 2007-01-020
1
.
25.
Pang
,
K. M.
,
Ng
,
H. K.
, and
Gan
,
S.
,
2011
, “
Development of an Integrated Reduced Fuel Oxidation and Soot Precursor Formation Mechanism for CFD Simulations of Diesel Combustion
,”
Fuel
,
90
, pp.
2902
2914
.10.1016/j.fuel.2011.04.027
26.
Jerzembeck
,
S.
,
Peters
,
N.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation
,”
Combust. Flame
,
156
, pp.
292
301
.10.1016/j.combustflame.2008.11.009
27.
Gauthier
,
B. M.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures
,”
Combust. Flame
,
139
, pp.
300
311
.10.1016/j.combustflame.2004.08.015
28.
Cancino
,
L. R.
,
Fikri
,
M.
,
Oliveira
,
A. A. M.
, and
Schulz
,
C.
,
2011
, “
Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling
,”
Fuel
,
90
, pp.
1238
1244
.10.1016/j.fuel.2010.11.003
29.
Hartmann
,
M.
,
Gushterova
,
I.
,
Fikri
,
M.
,
Schulz
,
C.
,
Schiessl
,
R.
, and
Mass
,
U.
,
2011
, “
Auto-Ignition of Toluene-Doped n-Heptane and Iso-Octane/Air Mixtures: High-Pressure Shock-Tube Experiments and Kinetics Modeling
,”
Combust. Flame
,
158
, pp.
172
178
.10.1016/j.combustflame.2010.08.005
30.
Wang
,
H.
, and
Frenklach
,
M.
,
1997
, “
A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames
,”
Combust. Flame
,
110
, pp.
173
221
.10.1016/S0010-2180(97)00068-0
31.
Eiteneer
,
B.
, and
Frenklach
,
M.
,
2008
, “
Experimental and Modeling Study of Shock-Tube Oxidation of Acetylene
,”
Int. J. Chem. Kinet.
,
35
, pp.
391
414
.10.1002/kin.10141
32.
Qin
,
Z.
,
Lissianski
,
V.
,
Yang
,
H.
,
Gardiner
,
W. C.
,
Davis
,
S. G.
, and
Wang
,
H.
,
2000
, “
Combustion Chemistry of Propane: A Case Study of Detailed Reaction Mechanism Optimization
,”
Proc. Combust. Inst.
,
28
, pp.
1663
1669
.10.1016/S0082-0784(00)80565-2
33.
Laskin
,
A.
,
Wang
,
H.
, and
Law
,
C. K.
,
2000
, “
Detailed Kinetic Modeling of 1,3-Butadiene Oxidation at High Temperatures
,”
Int. J. Chem. Kinet.
,
39
, pp.
589
614
.10.1002/1097-4601(2000)32:10<589::AID-KIN2>3.0.CO;2-U
34.
Djurisic
,
Z. M.
,
1999
, “
Detailed Kinetic Modeling of Benzene and Toluene Oxidation at High Temperatures
,” M.S. thesis, University of Delaware, Newark, DE.
35.
Costa
,
I. D.
,
Fournet
,
R.
,
Billaud
,
F.
, and
Battin-leclerc
,
F.
,
2003
, “
Experimental and Modeling Study of the Oxidation of Benzene
,”
Int. J. Chem. Kinet.
,
35
, pp.
503
524
.10.1002/kin.10148
36.
Oehlschlager
,
M. A.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2006
, “
Investigation of the Reaction of Toluene With Molecular Oxygen in Shock-Heated Gases
,”
Combust. Flame
,
147
, pp.
195
208
.10.1016/j.combustflame.2006.08.006
37.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Combustion
,”
Combust. Flame
,
114
, pp.
149
177
.10.1016/S0010-2180(97)00282-4
38.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
, pp.
253
280
.10.1016/S0010-2180(01)00373-X
39.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
,
2009
, “
A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane
,”
Combust. Flame
,
156
, pp.
181
199
.10.1016/j.combustflame.2008.07.014
40.
Kriokidis
,
X.
,
Moriarty
,
N. M.
,
Lester
,
W. A.
, and
Frenklach
,
M.
,
2001
, “
A Quantum Monte Carlo Study of Energy Differences in C4H3 and C4H5 Isomers
,”
Int. J. Chem. Kinet.
,
33
, pp.
808
820
.10.1002/kin.10004
41.
Bikas
,
G.
, and
Peters
,
N.
,
2001
, “
Kinetic Modeling of n-Decane Combustion and Autoignition
,”
Combust. Flame
,
126
, pp.
1456
1475
.10.1016/S0010-2180(01)00254-1
42.
Marinov
,
N. M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Vincitore
,
A. M.
,
Costaldi
,
M. J.
,
Senkan
,
S. M.
, and
Melius
,
C. F.
,
1998
, “
Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame
,”
Combust. Flame
,
114
, pp.
192
213
.10.1016/S0010-2180(97)00275-7
43.
Miller
,
J. A.
, and
Klippenstein
,
S. J.
,
2004
, “
The H+C2H2(+M)C2H3(+M) and H+C2H4(+M)C2H5(+M) Reactions: Electronic Structure, Variational Transition-State Theory, and Solutions to a Two-Dimensional Master Equation
,”
Phys. Chem. Chem. Phys.
,
6
, pp.
1192
1202
.10.1039/b313645k
44.
Oehlschlager
,
M. A.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2005
, “
High Temperature Ethane and Propane Decomposition
,”
Proc. Combust. Inst.
,
30
, pp.
1119
1127
.10.1016/j.proci.2004.07.032
45.
Bozzelli
,
J. W.
, and
Dean
,
A. M.
,
1997
, “
Hydrocarbon Radical Reactions With Oxygen: Comparison of Allyl, Formyl, and Vinyl to Ethyl
,”
J. Phys. Chem.
,
93
, pp.
4427
4491
.
46.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
2005
, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J. Chem. Phys. Ref. Data
,
34
, pp.
1
641
.10.1063/1.1748524
47.
Scherer
,
S.
,
Just
,
T.
, and
Frank
,
P.
,
2000
, “
High-Temeprature Investigations on Pyrolytic Reactions of Propargyl Radicals
,”
Proc. Combust. Inst.
,
28
, pp.
1511
1518
.10.1016/S0082-0784(00)80548-2
48.
Rossi
,
M.
,
2008
, “
Thermochemical Properties From Ab Initio Calculations
,”
Int. J. Chem. Kinet.
,
40
, pp.
395
415
.10.1002/kin.20326
49.
Narayanaswamy
,
K.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2010
, “
A Consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species
,”
Combust. Flame
,
157
, pp.
1879
1898
.10.1016/j.combustflame.2010.07.009
50.
Kislov
,
V. V.
,
Islamova
,
N. I.
,
Kolker
,
A. M.
,
Lin
,
S. H.
, and
Mebel
,
A. M.
,
2005
, “
Hydrogen Abstraction Acetylene Addition and Diels-Alder Mechanisms of PAH Formation: A Detailed Study Using First Principles Calculations
,”
J. Chem. Theory Comput.
,
1
, pp.
908
924
.10.1021/ct0500491
51.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
, pp.
67
81
.10.1016/j.combustflame.2007.10.020
52.
Lu
,
T.
, and
Law
,
C.
,
2006
, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: n-Heptane and Iso-Octane
,”
Combust. Flame
,
144
, pp.
24
36
.10.1016/j.combustflame.2005.02.015
53.
Lu
,
T.
, and
Law
,
C.
,
2006
, “
On the Applicability of Directed Relation Graphs to the Reduction of Reaction Mechanisms
,”
Combust. Flame
,
146
, pp.
472
483
.10.1016/j.combustflame.2006.04.017
54.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Curran
,
H. J.
,
Boercker
,
J. E.
, and
Kunrath
,
E.
,
2001
, “
Chemical Kinetic Modeling Study of Shock Tube Ignition of Heptane Isomers
,”
Int. J. Chem. Kinet.
,
33
, pp.
868
877
.10.1002/kin.10020
55.
Tsang
,
W.
,
2003
, “
Progress in the Development of a Kinetic Data Base for Heptane Combustion
,” 41st AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics. Paper No. 2003-0063.
56.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
Chemkin–II: A Fortran Chemical Kinetics Package for Analysis of Gas-Phase Chemical Kinetics
,” Report No. SAND89–8009B, Sandia Laboratories, Albuquerque, NM.
57.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
,
1985
, “
PREMIX: A Fortran Program for Modeling Steady, Laminar, One-Dimensional Premixed Flame
,” Report No. SAND85–8240, Sandia Laboratories, Albuquerque, NM.
58.
Lutz
,
A. E.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Rupley
,
F. M.
,
1997
, “
OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames
,” Report No. SAND96–8243, Sandia Laboratories, Albuquerque, NM.
59.
Seery
,
D. J.
, and
Bowman
,
C. T.
,
1970
, “
An Experimental and Analytical Study of Methane Oxidation Behind Shock Waves
,”
Combust. Flame
,
14
, pp.
37
47
.10.1016/S0010-2180(70)80008-6
60.
Bosschaart
,
K. J.
, and
DeGoey
,
L. P. H.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
, pp.
261
269
.10.1016/j.combustflame.2003.10.005
61.
Burcat
,
A.
,
Snyder
,
C.
, and
Brabbs
,
T.
,
1986
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,” Technical Memorandum No. TM-87312, NASA, Cleveland, OH.
62.
Johnston
,
R. J.
, and
Farrell
,
J. T.
,
2005
, “
Laminar Burning Velocities and Markstein Lengths of Aromatics at Elevated Temperature and Pressure
,”
Proc. Combust. Inst.
,
30
, pp.
217
224
.10.1016/j.proci.2004.08.075
63.
Davidson
,
D. F.
,
Gauthier
,
B. M.
, and
Hanson
,
R. K.
,
2005
, “
Shock Tube Ignition Measurements of Iso-Octane/Air and Toluene/Air at High Pressures
,”
Proc. Combust. Inst.
,
30
, pp.
1175
1182
.10.1016/j.proci.2004.08.004
64.
Dagaut
,
P.
,
Pengloan
,
G.
, and
Ristori
,
A.
,
2002
, “
Oxidation, Ignition and Combustion of Toluene: Experimental and Detailed Chemical Kinetic Modeling
,”
Phys. Chem. Chem. Phys.
,
4
, pp.
1846
1854
.10.1039/b110282f
65.
Ciezki
,
H. K.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane–Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
, pp.
421
433
.10.1016/0010-2180(93)90142-P
66.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
, pp.
599
619
.10.1016/S0010-2180(97)00049-7
67.
Bittner
,
J. D.
, and
Howard
,
J. T.
,
1981
, “
Composition Profiles and Reaction Mechanisms in a Near-Sooting Premixed Benzene/Oxygen/Argon Flame
,”
Proc. Combust. Inst.
,
18
, pp.
1105
1116
.10.1016/S0082-0784(81)80115-4
68.
Bakali
,
A. E.
,
Delfau
,
J. L.
, and
Vovelle
,
C.
,
1998
, “
Experimental Study of 1 Atmosphere, Rich, Premixed n-Heptane and Iso-Octane Flames
,”
Combust. Sci. Technol.
,
140
, pp.
69
91
.10.1080/00102209808915768
69.
Doute
,
C.
,
Delfau
,
J. L.
,
Akrich
,
R.
, and
Vovelle
,
C.
,
1995
, “
Chemical Structure of Atmospheric Pressure Premixed n-Decane and Kerosene Flames
,”
Combust. Sci. Technol.
,
106
, pp.
327
344
.10.1080/00102209508907785
70.
Berta
,
P.
,
Aggarwal
,
S. K.
, and
Puri
,
I. K.
,
2006
, “
An Experimental and Numerical Investigation of n-Heptane/Air Counterflow Partially Premixed Flames and Emission of NOx and PAH Species
,”
Combust. Flame
,
145
, pp.
760
764
.10.1016/j.combustflame.2006.02.003
71.
Kazakov
,
A.
,
Wang
,
H.
, and
Frenklach
,
M.
,
1995
, “
Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar
,”
Combust. Flame
,
100
, pp.
111
120
.10.1016/0010-2180(94)00086-8
72.
Frenklach
,
M.
, and
Harris
,
S. J.
,
1987
, “
Aerosol Dynamics Modeling Using the Method of Moments
,”
J. Colloid Interface Sci.
,
118
, pp.
252
261
.10.1016/0021-9797(87)90454-1
73.
Inal
,
F.
,
Tayfur
,
G.
,
Melton
,
T. R.
, and
Senkan
,
S. M.
,
2003
, “
Experimental and Artificial Neural Network Modeling Study on Soot Formation in Premixed Hydrocarbon Flames
,”
Fuel
,
82
, pp.
1477
1490
.10.1016/S0016-2361(03)00060-7
74.
Guelder
,
O. L.
,
1995
, “
Effects of Oxygen on Soot Formation in Methane, Propane, and n-Butane Diffusion Flames
,”
Combust. Flame
,
101
, pp.
302
310
.10.1016/0010-2180(94)00217-G
75.
Tsurikov
,
M.
,
Geigle
,
K.
,
Krueger
,
V.
,
Schneider-kuehnle
,
Y.
,
Strickner
,
W.
,
Lueckerath
,
R.
,
Hadef
,
R.
, and
Aigner
,
M.
,
2005
, “
Laser-Based Investigation of Soot Formation in Laminar Premixed Flames at Atmospheric and Elevated Pressures
,”
Combust. Sci. Technol.
,
177
, pp.
1835
1862
.10.1080/00102200590970212
76.
Tree
,
D.
, and
Svensson
,
K. I.
,
2006
, “
Soot Processes in Compression Ignition Engines
,”
Prog. Energy Combust. Sci.
,
33
, pp.
272
309
.10.1016/j.pecs.2006.03.002
77.
Stanmore
,
B. R.
,
Brilhac
,
J. F.
, and
Gilot
,
P.
,
2001
, “
The Oxidation of Soot: A Review of Experiments, Mechanisms and Models
,”
Carbon
,
39
, pp.
2247
2268
.10.1016/S0008-6223(01)00109-9
78.
Hong
,
Z.
,
Davidson
,
D. F.
,
Vasu
,
S. S.
, and
Hanson
,
R. K.
,
2009
, “
The Effect of Oxygenates on Soot Formation in Rich Heptane Mixtures: A Shock Tube Study
,”
Fuel
,
88
, pp.
1901
1906
.10.1016/j.fuel.2009.04.013
79.
Alexiou
,
A.
, and
Williams
,
A.
,
1995
, “
Soot Formation in Shock-Tube Pyrolysis of Toluene–n-Heptane and Toluene–Iso-Octane Mixtures
,”
Fuel
,
74
, pp.
153
158
.10.1016/0016-2361(95)92648-P
80.
Mueller
,
M. E.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2009
, “
Hybrid Method of Moments for Modeling Soot Formation and Growth
,”
Combust. Flame
,
156
, pp.
1143
1155
.10.1016/j.combustflame.2009.01.025
81.
See supplemental material at E-JERTD2 for the kinetic scheme
.
You do not currently have access to this content.