In this present study, burning velocities of H2CO mixtures (primary constituents of syngas fuels) are measured. Impact of different burner systems, H2 concentration, and different measurement techniques on the burning velocities of H2CO mixtures are discussed. The burning velocities of H2CO mixtures increase as the H2 contents in the mixture increase. Even with different burner systems using different methods, the burning velocities are aligned in the lean condition, but at rich conditions, they deviate from each other. The burning velocities of actual syngas compositions (based on different sources of coal) are also measured and analyzed. It was found that the effect of carbon dioxide had a more dominating role compared with nitrogen on the burning velocities.

1.
Scholte
,
T. G.
, and
Vaags
,
P. B.
, 1959, “
Burning Velocities of Mixtures of Hydrogen, Carbon Monoxide and Methane With Air
,”
Combust. Flame
0010-2180,
3
, pp.
511
24
.
2.
Narula
,
R. G.
, 1998, “
Alternative Fuels for Gas Turbine Plants—An Engineering Procurement, and Construction Contractor’s Perspective
,”
International Gas Turbine and Aero Engine Congress and Exhibition
, Stockholm, Sweden, ASME Paper No. 98-GT-122.
3.
Bouvet
,
N.
,
Lee
,
S. Y.
,
Gokalp
,
I.
, and
Santoro
,
R. J.
, 2007, “
Flame Speed Characteristics of Syngas (H2–CO) With Straight Burners for Laminar Premixed Flames
,”
Third European Combustion Meeting, ECM
, pp.
1
6
.
4.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1994, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Sym. (Int.) Combust., [Proc.]
,
25
, pp.
1317
1323
.
5.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
, 2007, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
0010-2180,
151
, pp.
104
119
.
6.
Choudhuri
,
A.
,
Subramanya
,
M.
, and
Gollahalli
,
S. R.
, 2008, “
Flame Extinction Limits of H2–CO Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, pp.
031501
.
7.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1994, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction
,”
Symposium (International) on Combustion
,
25
, pp.
749
757
.
8.
Brown
,
M. J.
,
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1996, “
Markstein Lengths of CO/H2/Air Flames Using Expanding Spherical Flames
,”
Sym. (Int.) Combust., [Proc.]
,
26
, pp.
875
881
.
9.
Sun
,
H.
,
Yang
,
S.
,
Jomass
,
G.
, and
Law
,
C.
, 2007, “
High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
439
446
.
10.
Gibbs
,
G. J.
, and
Calcote
,
H. F.
, 1959, “
Effect of Molecular Structure on Burning Velocity
,”
J. Chem. Eng. Data
0021-9568,
4
, pp.
226
237
.
11.
Dong
,
C.
,
Zhou
,
Q.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Xu
,
T.
, and
Hui
,
S.
, 2009, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Carbon Monoxide/Air Mixtures
,”
Fuel
0016-2361,
88
, pp.
1858
1863
.
12.
Chomiak
,
J.
,
Longwell
,
J. P.
, and
Sarofim
,
A. F.
, 1989, “
Combustion of Low Calorific Value Gases: Problems and Prospects
,”
Prog. Energy Combust. Sci.
0360-1285,
15
, pp.
109
129
.
You do not currently have access to this content.