Abstract

Transistor density trends till recently have been following Moore's law, doubling every generation resulting in increased power density. The computational performance gains with the breakdown of Moore's law were achieved by using multicore processors, leading to nonuniform power distribution and localized high temperatures making thermal management even more challenging. Cold plate-based liquid cooling has proven to be one of the most efficient technologies in overcoming these thermal management issues. Traditional liquid-cooled data center deployments provide a constant flow rate to servers irrespective of the workload, leading to excessive consumption of coolant pumping power. Therefore, a further enhancement in the efficiency of implementation of liquid cooling in data centers is possible. The present investigation proposes the implementation of dynamic cooling using an active flow control device to regulate the coolant flow rates at the server level. This device can aid in pumping power savings by controlling the flow rates based on server utilization. The flow control device design contains a V-cut ball valve connected to a microservo motor used for varying the device valve angle. The valve position was varied to change the flow rate through the valve by servomotor actuation based on predecided rotational angles. The device operation was characterized by quantifying the flow rates and pressure drop across the device by changing the valve position using both computational fluid dynamics and experiments. The proposed flow control device was able to vary the flow rate between 0.09 lpm and 4 lpm at different valve positions.

References

1.
Gao
,
T.
,
Tang
,
H.
,
Cui
,
Y.
, and
Luo
,
Z.
,
2018
, “
A Test Study of Technology Cooling Loop in a Liquid Cooling System
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp.
740
747
.10.1109/ITHERM.2018.8419519
2.
Iyengar
,
M.
,
2010
, “
Energy Consumption of Information Technology Data Centers
,”
J. Electron. Cool.
,
16
(
4
), pp.
28
31
.https://www.electronicscooling.com/2010/12/energy-consumption-of-information-technology-data-centers/
3.
Lawrence
,
A.
,
2020
, “
Data Center PUEs Flat Since 2013
,”
Global Uptime Institute Survey
, Seattle WA, accessed Jan. 7, 2021, https://journal.uptimeinstitute.com/data-center-pues-flat-since-2013/
4.
Hoang
,
C. H.
,
Khalili
,
S.
,
Ramakrisnan
,
B.
,
Rangarajan
,
S.
,
Hadad
,
Y.
,
Radmard
,
V.
,
Sikka
,
K.
,
Schiffres
,
S.
, and
Sammakia
,
B.
,
2020
, “
An Experimental Apparatus for Two-Phase Cooling of High Heat Flux Application Using an Impinging Cold Plate and Dielectric Coolant
,” 36th Semiconductor Thermal Measurement, Modeling & Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 16–20, pp.
32
38
.10.23919/SEMI-THERM50369.2020.9142831
5.
Shahi
,
P.
,
Agarwal
,
S.
,
Saini
,
S.
,
Niazmand
,
A.
,
Bansode
,
P.
, and
Agonafer
,
D.
,
2020
, “
CFD Analysis on Liquid Cooled Cold Plate Using Copper Nanoparticles
,”
ASME
Paper No. IPACK2020-2592.10.1115/IPACK2020-2592
6.
Niazmand
,
A.
,
Chauhan
,
T.
,
Saini
,
S.
,
Shahi
,
P.
,
Bansode
,
P. V.
, and
Agonafer
,
D.
,
2020
, “
CFD Simulation of Two-Phase Immersion Cooling Using FC-72 Dielectric Fluid
,”
ASME
Paper No. IPACK2020-2595.10.1115/IPACK2020-2595
7.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.10.1109/TDMR.2004.840855
8.
Ellsworth
,
M. J.
,
Campbell
,
L. A.
,
Simons
,
R. E.
,
Iyengar
,
M. K.
,
Schmidt
,
R. R.
, and
Chu
,
R. C.
,
2008
, “
The Evolution of Water Cooling for Large IBM Large Server Systems: Back to the Future
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Orlando, FL, May 28–31, pp.
266
274
.
9.
Goth, G. F., Arvelo, A., Eagle, J., Ellsworth, M. J., Marston, K. C., Sinha, A. K., and Zitz, J. A., 2012, “Thermal and Mechanical Analysis and Design of the IBM Power 775 Water Cooled Supercomputing Central Electronics Complex,”
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 30–June 1, pp. 700–709.10.1109/IT HERM.2012.6231496
10.
Schmidt
,
R. R.
,
2005
, “
Liquid Cooling is Back
,”
Electron. Cool.
,
11
(
3
), pp.
34
38
.https://www.electronicscooling.com/2005/08/liquid-cooling-is-back/
11.
Patrizio
,
A.
,
2018
, “
Lenovo Introduces New Water-Cooled Server Technology
,” Network World, Framingham, MA, accessed Feb. 26, 2018, https://www.networkworld.com/article/3258646/data-center/lenovo-introduces-newwater-cooled-server-technology.html
12.
Koblentz
,
E.
,
2018
, “
How to Get Started With Liquid Cooling for Servers and Data Center Racks
,” Data Centers Trends Newsletter, TechRepublic, Nashville, TN, U.S. edition, accessed July 8, 2018, https://www.techrepublic.com/article/how-to-get-started-with-liquid-cooling-for-servers-and-data-center-racks/
13.
Iyengar
,
M.
,
David
,
M.
,
Parida
,
P.
,
Kamath
,
V.
,
Kochuparambil
,
B.
,
Graybill
,
D.
,
Schultz
,
M.
,
2012
, “
Server Liquid Cooling With Chiller-Less Data Center Design to Enable Significant Energy Savings
,” 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp.
212
223
.10.1109/STHERM.2012.6188851
14.
Fan
,
Y.
,
Winkel
,
C.
,
Kulkarni
,
D.
, and
Tian
,
W.
,
2018
, “
Analytical Design Methodology for Liquid Based Cooling Solutions for High TDP CPUs
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–Jun. 1, pp.
582
586
.10.1109/ITHERM.2018.8419562
15.
Gullbrand
,
J.
,
Luckeroth
,
M. J.
,
Sprenger
,
M. E.
, and
Winkel
,
C.
,
2019
, “
Liquid Cooling of Compute System
,”
ASME J. Electron. Packag.
,
141
(
1
), p.
010802
.10.1115/1.4042802
16.
Shah
,
J. M.
,
Anand
,
R.
,
Saini
,
S.
,
Cyriac
,
R.
,
Agonafer
,
D.
,
Singh
,
P.
, and
Kaler
,
M.
,
2019
, “
Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
,”
ASME
Paper No. IPACK2019-6601.10.1115/IPACK2019-6601
17.
Saini
,
S.
,
2018
,
Airflow Path and Flow Pattern Analysis of Sub-Micron Particulate Contaminants in a Data Center With Hot Aisle Containment System Utilizing Direct Air Cooling
,
The University of Texas at Arlington
,
Arlington, TX
.
18.
Saini
,
S.
,
Shahi
,
P.
,
Bansode
,
P.
,
Siddarth
,
A.
, and
Agonafer
,
D.
,
2020
, “
CFD Investigation of Dispersion of Airborne Particulate Contaminants in a Raised Floor Data Center
,”
36th Semiconductor Thermal Measurement, Modeling & Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 16–20, pp.
39
47
.10.23919/SEMITHERM50369.2020.9142865
19.
Thirunavakkarasu
,
G.
,
Saini
,
S.
,
Shah
,
J. M.
, and
Agonafer
,
D.
,
2018
, “
Air Flow Pattern and Path Flow Simulation of Airborne Particulate Contaminants in a High-Density Data Center Utilizing Airside Economization
,”
ASME
Paper No. IPACK2018-8436.10.1115/IPACK2018-8436
20.
Saini
,
S.
,
Adsul
,
K. K.
,
Shahi
,
P.
,
Niazmand
,
A.
,
Bansode
,
P.
, and
Agonafer
,
D.
,
2020
, “
CFD Modeling of the Distribution of Airborne Particulate Contaminants Inside Data Center Hardware
,”
ASME
Paper No. IPACK2020-2590.10.1115/IPACK2020-2590
21.
Gandhi
,
D.
,
Chowdhury
,
U.
,
Chauhan
,
T.
,
Bansode
,
P. V.
,
Saini
,
S.
,
Shah
,
J. M.
, and
Agonafer
,
D.
,
2019
, “
Computational Analysis for Thermal Optimization of Server for Single Phase Immersion Cooling
,”
ASME
Paper No. IPACK2019-6587.10.1115/IPACK2019-6587
22.
Shinde
,
P. A.
,
Bansode
,
P. V.
,
Saini
,
S.
,
Kasukurthy
,
R.
,
Chauhan
,
T.
,
Shah
,
J. M.
, and
Agonafer
,
D.
,
2019
, “
Experimental Analysis for Optimization of Thermal Performance of a Server in Single Phase Immersion Cooling
,”
ASME
Paper No. IPACK2019-6590.10.1115/IPACK2019-6590
23.
Niazmand
,
A.
,
Murthy
,
P.
,
Saini
,
S.
,
Shahi
,
P.
,
Bansode
,
P.
, and
Agonafer
,
D.
,
2020
, “
Numerical Analysis of Oil Immersion Cooling of a Server Using Mineral Oil and Al2O3 Nanofluid
,”
ASME
Paper No. IPACK2020-2662.10.1115/IPACK2020-2662
24.
Kumar
,
A.
,
Shahi
,
P.
, and
Saha
,
S. K.
,
2018
, “
Experimental Study of Latent Heat Thermal Energy Storage System for Medium Temperature Solar Applications
,” Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (
MCM'18
), Madrid, Spain, Aug. 16–18, pp.
16
18
.10.11159/htff18.152
25.
Hoang, C. H., Rangarajan, S., Khalili, S., Ramakrisnan, B., Radmard, V., Hadad, Y., Schiffres, S., and Sammakia, B., 2021, “Hybrid Microchannel/Multi-Jet Two-Phase Heat Sink: A Benchmark and Geometry Optimization Study of Commercial Product,”
Int. J. Heat Mass Transfer
, 169, p. 120920.10.1016/j.ijheatmasstransfer.2021.120920
26.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C. D.
,
2006
, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
137
144
.10.1115/1.2165214
27.
Gandhi
,
A.
,
2013
, “Dynamic Server Provisioning for Data Center Power Management,”
Ph.D. thesis
, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
.http://reportsarchive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-110.pdf
28.
Hazelwood
,
K.
,
Bird
,
S.
,
Brooks
,
D.
,
Chintala
,
S.
,
Diril
,
U.
,
Dzhulgakov
,
D.
, Fawzy, M.,
2018
, “
Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective
,” IEEE International Symposium on High Performance Computer Architecture (
HPCA
), Vienna, Austria, Feb. 24–28, pp.
620
629
.10.1109/HP CA.2018.00059
29.
Arghode
,
V. K.
,
Sundaralingam
,
V.
, and
Joshi
,
Y.
,
2016
, “
Airflow Management in a Contained Cold Aisle Using Active Fan Tiles for Energy Efficient Data-Center Operation Airflow Management in a Contained Cold Aisle Using Active Fan Tiles for Energy Efficient Data-Center
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
246
256
.10.1080/01457632.2015.1051386
30.
KhaliliMohsenian
,
S.
,
Desu
,
G.
,
Ghose
,
A. K.
, and
Sammakia
,
B.
,
2019
, “
Airflow Management Using Active Air Dampers in Presence of a Dynamic Workload in Data Centers
,”
35th Semiconductor Thermal Measurement, Modeling and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp.
101
110
.https://ieeexplore.ieee.org/document/9165298
31.
Xu
,
H.
,
Feng
,
C.
, and
Li
,
B.
,
2015
, “
Temperature Aware Workload Management in Geo-Distributed Data Centers
,”
IEEE Trans. Parallel Distrib. Syst.
,
26
(
6
), pp.
1743
1753
.10.1109/TPDS.2014.2325836
32.
Kasukurthy
,
R.
,
2019
, “
Design and Optimization of Energy Conserving Solutions in Data Center Application
,” Ph.D. dissertation,
The University of Texas at Arlington
,
Arlington, TX
.
33.
Kasukurthy
,
R.
,
Rachakonda
,
A.
, and
Agonafer
,
D.
,
2020
, “
Design and Optimization of Control Strategy to Reduce Pumping Power in Dynamic Liquid Cooling
,”
ASME. J. Electron. Packag.
, 143(3), p. 031001.10.1115/1.4049018
34.
Tao
,
J.
,
Lin
,
Z.
,
Ma
,
C.
,
Ye
,
J.
,
Zhu
,
Z.
,
Li
,
Y.
, and
Mao
,
W.
,
2019
, “
An Experimental and Numerical Study of Regulating Performance and Flow Loss in a V-Port Ball Valve
,”
ASME. J. Fluids Eng.
,
142
(
2
), p.
021207
.10.1115/1.4044986
35.
Chern
,
M.
, and
Wang
,
C.
,
2004
, “
Control of Volumetric Flow-Rate of Ball Valve Using V-Port
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
471
481
.10.1115/1.1760536
36.
ANSYS® FLUENT
,
2019
, Release R3, ANSYS Fluent User's Guide, ANSYS, Inc, Canonsburg, PA.
37.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
,
Butterworth-Heinemann
, Oxford, UK.
38.
Lin
,
F.
, and
Schohl
,
G. A.
,
2004
, “
CFD Prediction and Validation of Butterfly Valve Hydrodynamic Forces
,”
World Water and Environmental Resources Congress 2004
, June 27–July 1, Salt Lake City, UT, pp.
1
8
.10.1061/40737(2004)232
39.
Shahi
,
P.
,
Saini
,
S.
,
Bansode
,
P.
, and
Agonafer
,
D.
,
2021
, “
A Comparative Study of Energy Savings in a Liquid-Cooled Server by Dynamic Control of Coolant Flow Rate at Server Level
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
4
), pp.
616
624
.10.1109/TCPMT.2021.3067045
You do not currently have access to this content.