Abstract

Next-generation interconnects utilizing mechanically interlocking structures enable permanent and reworkable joints between micro-electronic devices. Mechanical metamaterials, specifically dry adhesives, are an active area of research which allows for the joining of objects without traditional fasteners or adhesives, and in the case of chip integration, without solder. This paper focuses on reworkable joints that enable chips to be removed from their substrates to support reusable device prototyping and packaging, creating the possibility for eventual pick-and-place mechanical bonding of chips with no additional bonding steps required. Analytical models are presented and are verified through finite element analysis (FEA) assuming pure elastic behavior. Sliding contact conditions in FEA simplify consideration of several design variations but contribute ∼10% uncertainty relative to experiment, analysis, and point-loaded FEA. Two designs are presented; arrays of flat cantilevers have a bond strength of 6.3 kPa, and nonflat cantilevers have a strength of 29 kPa. Interlocking designs present self-aligning in-plane forces that emerge from translational perturbation from perfect alignment. Stresses exceeding the material yield stress during adhesion operations present a greater concern for repeatable operation of compliant interlocking joints and will require further study quantifying and accommodating plastic deformation. Designs joining a rigid array with a complementary compliant cantilever array preserve the condition of reworkability for the surface presenting the rigid array. Eventual realization of interconnect technology based on this study will provide a great improvement of functionality and adaptability in heterogeneous integration and microdevice packaging.

References

1.
Bae
,
H.-C.
,
Lee
,
H.
,
Choi
,
K.-S.
, and
Eom
,
Y.-S.
,
2013
, “
Fine‐Pitch Solder on Pad Process for Microbump Interconnection
,”
ETRI J.
,
35
(
6
), pp.
1152
1155
.10.4218/etrij.13.0213.0284
2.
Cheng
,
B.
,
Chow
,
E. M.
,
De Bruyker
,
D.
,
Shubin
,
I.
,
Cunningham
,
J.
,
Chow
,
A.
,
Shi
,
J.
, and
Böhringer
,
K. F.
,
2011
, “
Current Crowding Study of a Micro Spring Contact for Flip Chip Packaging
,”
2011 IEEE 24th International Conference on Micro Electro Mechanical Systems
, Cancun, Mexico, Jan. 23–27,
pp.
360
363
.10.1109/MEMSYS.2011.5734436
3.
Estrada
,
J. A.
,
Lasser
,
G.
,
Pinto
,
M.
,
Herrault
,
F.
, and
Popović
,
Z.
,
2019
, “
Metal-Embedded Chip Assembly Processing for Enhanced RF Circuit Performance
,”
IEEE Trans. Microwave Theory Tech.
,
67
(
9
), pp.
3537
3546
.10.1109/TMTT.2019.2931010
4.
Fendler
,
M.
,
Marion
,
F.
,
Saint Patrice
,
D.
,
Mandrillon
,
V.
,
Berger
,
F.
, and
Ribot
,
H.
,
2011
, “
Technological and Electrical Performances of Ultrafine-Pitch Flip-Chip Assembly Based on Room-Temperature Vertical Interconnection
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
(
3
), pp.
291
298
.10.1109/TCPMT.2011.2107741
5.
Khan
,
S. A.
,
Choudhury
,
A.
,
Kumbhat
,
N.
,
Pulugurtha
,
M. R.
,
Sundaram
,
V.
,
Meyer-Berg
,
G.
, and
Tummala
,
R.
,
2013
, “
Multichip Embedding Technology Using Fine-Pitch Cu–Cu Interconnections
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
2
), pp.
197
204
.10.1109/TCPMT.2012.2235528
6.
Kumbhat
,
N.
,
Choudhury
,
A.
,
Mehrotra
,
G.
,
Raj
,
P. M.
,
Sundaram
,
V.
, and
Tummala
,
R.
,
2012
, “
Highly Reliable and Manufacturable Ultrafine Pitch Cu–Cu Interconnections for Chip-Last Embedding With Chip-First Benefits
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
9
), pp.
1434
1441
.10.1109/TCPMT.2012.2192120
7.
Miller
,
D. C.
,
Zhang
,
W.
, and
Bright
,
V. M.
,
2001
, “
Micromachined, Flip–Chip Assembled, Actuatable Contacts for Use in High Density Interconnection in Electronics Packaging
,”
Sens. Actuators A: Phys.
,
89
(
1–2
), pp.
76
87
.10.1016/S0924-4247(00)00548-3
8.
Orii
,
Y.
,
Toriyama
,
K.
,
Noma
,
H.
,
Oyama
,
Y.
,
Nishiwaki
,
H.
,
Ishida
,
M.
,
Nishio
,
T.
,
LaBianca
,
N. C.
, and
Feger
,
C.
,
2009
, “
Ultrafine-Pitch C2 Flip Chip Interconnections With Solder-Capped Cu Pillar Bumps
,”
2009 59th Electronic Components and Technology Conference
, San Diego, CA, May 26–29, pp.
948
953
.10.1109/ECT C.2009.5074127
9.
Pande
,
P. P.
, and
Vangal
,
S.
,
2010
, “
Guest Editors' Introduction: Promises and Challenges of Novel Interconnect Technologies
,”
IEEE Des. Test Comput.
,
27
(
4
), pp.
6
9
.10.1109/MDT.2010.87
10.
Shubin
,
I.
,
Chow
,
A.
,
Cunningham
,
J.
,
Giere
,
M.
,
Nettleton
,
N.
,
Pinckney
,
N.
, and
Shi
,
J.
,
2010
, “
A Package Demonstration With Solder Free Compliant Flexible Interconnects
,” 2010 Proceedings of the 60th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, June 1–4, pp.
1429
1435
.10.1109/ECTC.2010.5490813
11.
Peng
,
L.
,
Zhang
,
L.
,
Fan
,
J.
,
Li
,
H. Y.
,
Lim
,
D. F.
, and
Tan
,
C. S.
,
2012
, “
Ultrafine Pitch (6 μm) of Recessed and Bonded Cu–Cu Interconnects by Three-Dimensional Wafer Stacking
,”
IEEE Electron Device Lett.
,
33
(
12
), pp.
1747
1749
.10.1109/LED.2012.2218273
12.
Vokoun
,
D.
,
Sedlák
,
P.
,
Frost
,
M.
,
Pilch
,
J.
,
Majtás
,
D.
, and
Šittner
,
P.
,
2011
, “
Velcro-Like Fasteners Based on NiTi Micro-Hook Arrays
,”
Smart Mater. Struct.
,
20
(
8
), p.
085027
.10.1088/0964-1726/20/8/085027
13.
Ahn
,
Y.
,
Jang
,
Y.
,
Selvapalam
,
N.
,
Yun
,
G.
, and
Kim
,
K.
,
2013
, “
Supramolecular Velcro for Reversible Underwater Adhesion
,”
Angew. Chem., Int. Ed.
,
52
(
11
), pp.
3140
3144
.10.1002/anie.201209382
14.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tománek
,
D.
,
2003
, “
Bonding and Energy Dissipation in a Nanohook Assembly
,”
Phys. Rev. Lett.
,
91
(
16
), p.
165503
.10.1103/PhysRevLett.91.165503
15.
Reed
,
M. L.
,
Han
,
H.
, and
Weiss
,
L. E.
,
1992
, “
Silicon Micro-Velcro
,”
Adv. Mater.
,
4
(
1
), pp.
48
51
.10.1002/adma.19920040111
16.
Han
,
H.
,
Weiss
,
L. E.
, and
Reed
,
M. L.
,
1991
, “
Mating and Piercing Micromechanical Structures for Surface Bonding Applications
,”
Proceedings of the 1991 Micro Electro Mechanical Systems (MEMS'91), An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots
, Nara, Japan, Jan. 30–Feb. 2, pp.
253
258
.10.1109/MEMSYS.1991.114806
17.
Han
,
H.
,
Weiss
,
L. E.
, and
Reed
,
M. L.
,
1992
, “
Micromechanical Velcro
,”
J. Microelectromech. Syst.
,
1
(
1
), pp.
37
43
.10.1109/84.128054
18.
Filter
,
W. F.
, and
Hohimer
,
J. P.
,
2002
, “
Micromechanical Die Attachment Surcharge
,” U.S. Patent No. 6,392,144.
19.
Brown
,
J. J.
, and
Bright
,
V. M.
,
2016
, “
Mechanical Interfacing Using Suspended Ultrathin Films From ALD
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
356
361
.10.1109/JMEMS.2016.2519341
20.
Peng
,
H.-C.
,
Khoo
,
H. S.
, and
Tseng
,
F.-G.
,
2012
, “
Increased Interfacial Strength at Microscale Silicon–Polymer Interface by Nanowires Assisted Micro-Sandglass Shaped Interlocks
,”
Jpn. J. Appl. Phys.
,
51
(
2R
), p.
027302
.10.1143/JJAP.51.027302
21.
Gillies
,
A. G.
, and
Fearing
,
R. S.
,
2010
, “
A Micromolded Connector for Reconfigurable Millirobots
,”
J. Micromech. Microeng.
,
20
(
10
), p.
105011
.10.1088/0960-1317/20/10/105011
22.
Yap
,
C. C.
,
Brun
,
C.
,
Tan
,
D.
,
Li
,
H.
,
Teo
,
E. H. T.
,
Baillargeat
,
D.
, and
Tay
,
B. K.
,
2012
, “
Carbon Nanotube Bumps for the Flip Chip Packaging System
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
105
.10.1186/1556-276X-7-105
23.
Roenbeck
,
M. R.
,
Furmanchuk
,
A.
,
An
,
Z.
,
Paci
,
J. T.
,
Wei
,
X.
,
Nguyen
,
S. T.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2015
, “
Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces
,”
Nano Lett.
,
15
(
7
), pp.
4504
4516
.10.1021/acs.nanolett.5b01011
24.
Jonnalagadda
,
P.
,
Mescheder
,
U.
,
Kovacs
,
A.
, and
Nimoe
,
A.
,
2011
, “
Nanoneedles Based on Porous Silicon for Chip Bonding With Self Assembly Capability
,”
Phys. Status Solidi C
,
8
(
6
), pp.
1841
1846
.10.1002/pssc.201000139
25.
Aksak
,
B.
,
Murphy
,
M. P.
, and
Sitti
,
M.
,
2007
, “
Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays
,”
Langmuir
,
23
(
6
), pp.
3322
3332
.10.1021/la062697t
26.
Keshavarzi
,
S.
,
Mescheder
,
U.
, and
Reinecke
,
H.
,
2016
, “
Room Temperature Si–Si Direct Bonding Technique Using Velcro-Like Surfaces
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
371
379
.10.1109/JMEMS.2016.2519823
27.
Lee
,
S.-H.
,
Chae
,
J.
,
Yazdi
,
N.
, and
Najafi
,
K.
,
2006
, “
Micro-Brush Press-On Contact: A New Technique for Room Temperature Electrical and Mechanical Attachment
,”
19th IEEE International Conference on Micro Electro Mechanical Systems
, Istanbul, Turkey, Jan. 22–26,
pp.
342
345
.10.1109/MEMSYS.2006.1627806
28.
Kim
,
T.
,
Pang
,
C.
, and
Suh
,
K. Y.
,
2009
, “
Shape-Tunable Polymer Nanofibrillar Structures by Oblique Electron Beam Irradiation
,”
Langmuir
,
25
(
16
), pp.
8879
8882
.10.1021/la9018184
29.
Gorb
,
S. N.
,
Beutel
,
R. G.
,
Gorb
,
E. V.
,
Jiao
,
Y.
,
Kastner
,
V.
,
Niederegger
,
S.
,
Popov
,
V. L.
,
Scherge
,
M.
,
Schwarz
,
U.
, and
Vötsch
,
W.
,
2002
, “
Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects
,”
Integr. Comp. Biol.
,
42
(
6
), pp.
1127
1139
.10.1093/icb/42.6.1127
30.
Boesel
,
L. F.
,
Greiner
,
C.
,
Arzt
,
E.
, and
Del Campo
,
A.
,
2010
, “
Gecko‐Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives
,”
Adv. Mater.
,
22
(
19
), pp.
2125
2137
.10.1002/adma.200903200
31.
Tawfick
,
S.
,
De Volder
,
M.
,
Copic
,
D.
,
Park
,
S. J.
,
Oliver
,
C. R.
,
Polsen
,
E. S.
,
Roberts
,
M. J.
, and
Hart
,
A. J.
,
2012
, “
Engineering of Micro- and Nanostructured Surfaces With Anisotropic Geometries and Properties
,”
Adv. Mater.
,
24
(
13
), pp.
1628
1674
.10.1002/adma.201103796
32.
Sameoto
,
D.
,
Sharif
,
H.
,
Díaz Téllez
,
J. P.
,
Ferguson
,
B.
, and
Menon
,
C.
,
2014
, “
Nonangled Anisotropic Elastomeric Dry Adhesives With Tailorable Normal Adhesion Strength and High Directionality
,”
J. Adhes. Sci. Technol.
,
28
(
3–4
), pp.
354
366
.10.1080/01694243.2012.693809
33.
Rahmawan
,
Y.
,
Yoon
,
H.
,
Moon
,
M.-W.
,
Jeong
,
H.-G.
, and
Suh
,
K.-Y.
,
2014
, “
Janus-Faced Micro and Nanopillars for Geometry and Surface Chemistry Controllable Bioinspired Dry Adhesives
,”
J. Adhes. Sci. Technol.
,
28
(
3–4
), pp.
367
386
.10.1080/01694243.2012.693825
34.
Song
,
J.
,
Mengüç
,
Y.
, and
Sitti
,
M.
,
2013
, “
Enhanced Fabrication and Characterization of Gecko-Inspired Mushroom-Tipped Microfiber Adhesives
,”
J. Adhes. Sci. Technol.
,
27
(
17
), pp.
1921
1932
.10.1080/01694243.2013.766533
35.
Jeon
,
H. C.
,
Jeon
,
T. Y.
, and
Yang
,
S.-M.
,
2013
, “
Nanoarchitectures With Controllable Anisotropic Features in Structures and Properties From Simple and Robust Holographic Lithography
,”
ACS Appl. Mater. Interfaces
,
5
(
19
), pp.
9791
9797
.10.1021/am402886a
36.
Bae
,
W.-G.
,
Kwak
,
M. K.
,
Jeong
,
H. E.
,
Pang
,
C.
,
Jeong
,
H.
, and
Suh
,
K.-Y.
,
2013
, “
Fabrication and Analysis of Enforced Dry Adhesives With Core–Shell Micropillars
,”
Soft Matter
,
9
(
5
), pp.
1422
1427
.10.1039/C2SM27323C
37.
King
,
D. R.
,
Bartlett
,
M. D.
,
Gilman
,
C. A.
,
Irschick
,
D. J.
, and
Crosby
,
A. J.
,
2014
, “
Creating Gecko‐Like Adhesives for ‘Real World’ Surfaces
,”
Adv. Mater.
,
26
(
25
), pp.
4345
4351
.10.1002/adma.201306259
38.
Bartlett
,
M. D.
,
Croll
,
A. B.
,
King
,
D. R.
,
Paret
,
B. M.
,
Irschick
,
D. J.
, and
Crosby
,
A. J.
,
2012
, “
Looking Beyond Fibrillar Features to Scale Gecko‐Like Adhesion
,”
Adv. Mater.
,
24
(
8
), pp.
1078
1083
.10.1002/adma.201104191
39.
Wasay
,
A.
, and
Sameoto
,
D.
,
2015
, “
Gecko Gaskets for Self-Sealing and High-Strength Reversible Bonding of Microfluidics
,”
Lab Chip
,
15
(
13
), pp.
2749
2753
.10.1039/C5LC00342C
40.
Gilman
,
C. A.
,
Imburgia
,
M. J.
,
Bartlett
,
M. D.
,
King
,
D. R.
,
Crosby
,
A. J.
, and
Irschick
,
D. J.
,
2015
, “
Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion
,”
PLoS One
,
10
(
9
), p.
e0134604
.10.1371/journal.pone.0134604
41.
Chen
,
W.
, and
Sitaraman
,
S. K.
,
2016
, “
Area-Array of 3-Arc-Fan Compliant Interconnects as Effective Drop-Impact Isolator for Microsystems
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
337
346
.10.1109/JMEMS.2016.2521732
42.
Messler
,
R. W.
,
Genc
,
S.
, and
Gabriele
,
G. A.
,
1997
, “
Integral Attachment Using Snap‐Fit Features: A Key to Assembly Automation. Part 4—Selection of Locking Features
,”
Assem. Autom.
,
17
(
4
), pp.
315
328
.10.1108/01445159710191606
43.
Messler
,
R. W.
,
Genc
,
S.
, and
Gabriele
,
G. A.
,
1997
, “
Research Articles Integral Attachment Using Snap‐Fit Features: A Key to Assembly Automation. Part 3—An Attachment‐Level Design Methodology
,”
Assem. Autom.
,
17
(
3
), pp.
239
248
.10.1108/01445159710172445
44.
Messler
,
R. W.
,
2004
,
Joining of Materials and Structures: From Pragmatic Process to Enabling Technology
,
Butterworth-Heinemann
, Burlington, MA.
45.
Genc
,
S.
,
Messler
,
R. W.
, and
Gabriele
,
G. A.
,
1998
, “
Integral Attachment Using Snap‐Fit Features: A Key to Assembly Automation. Part 7—Testing the Conceptual Design Methodology With a Case Study
,”
Assem. Autom.
,
18
(
3
), pp.
223
236
.10.1108/01445159810224851
46.
Landau
,
K.
,
Landau
,
U.
, and
Salmanzadeh
,
H.
,
2009
, “
Productivity Improvement With Snap-Fit Systems
,”
Industrial Engineering and Ergonomics
,
Springer
, Berlin, pp.
595
608
.
47.
Messler
,
R. W.
, and
Genc
,
S.
,
1998
, “
Integral Micro-Mechanical Interlock (IMMI) Joints for Polymer-Matrix Composite Structures
,”
J. Thermoplast. Compos. Mater.
,
11
(
3
), pp.
200
215
.10.1177/089270579801100301
48.
Klahn
,
C.
,
Singer
,
D.
, and
Meboldt
,
M.
,
2016
, “
Design Guidelines for Additive Manufactured Snap-Fit Joints
,”
Procedia CIRP
,
50
(
1
), pp.
264
269
.10.1016/j.procir.2016.04.130
49.
Li
,
Y.
,
Saitou
,
K.
,
Kikuchi
,
N.
,
Skerlos
,
S. J.
, and
Papalambros
,
P. Y.
,
2001
, “
Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly
,”
Proceedings of the Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing
, Tokyo, Japan, Dec. 11–15,
pp.
360
365
.10.1109/ECODIM.2001.992381
50.
Shalaby
,
M.
, and
Saitou
,
K.
,
2008
, “
Design for Disassembly With High-Stiffness Heat-Reversible Locator-Snap Systems
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121701
.10.1115/1.2991134
51.
Brown
,
J. J.
,
Mettler
,
R. C.
,
Supekar
,
O. D.
, and
Bright
,
V. M.
,
2017
, “
Nonlinear Mechanics of Interlocking Cantilevers
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121012
.10.1115/1.4038195
You do not currently have access to this content.