Abstract

With the development of packaging devices toward high performance and high density, electronic devices are subjected to thermo-electric stresses under service conditions, which has become a particularly important reliability problem in micro-electronics packaging. The reliability of the chip under thermo-electric stresses is studied in this paper. First, thermo-electric coupling experiments were carried out on two solder joint structures of Ni/Sn3.5Ag/Cu and Ni/Sn3.5Ag/Ni. The interface evolution of solder joints under different current densities was analyzed. The reliability of the two structures under thermo-electric stresses was compared and analyzed. After that, three-dimensional finite element analysis was employed to simulate the current density, Joule heat, and temperature distribution of the flip chip. Finally, through the combination of experiment and simulation, the distribution of Joule heat and temperature of the chip was analyzed. The results show that the Ni/Sn3.5Ag/Ni structure has better reliability than the Ni/Sn3.5Ag/Cu structure under thermal–electric coupling. In addition, when the Ni layer was used as the cathode side, the constant temperature applied on the chip was 150 °C, and the current density was higher than 5 × 104 A/cm2, the dissolution failure of the Ni layer occurred in two structures. Because the higher current density generated a large amount of Joule heat where the current was crowded, resulting in excessively high temperature and rapid dissolution of the Ni barrier layer.

References

1.
Fu
,
Z.
,
Zhou
,
B.
,
Yao
,
R.
, and
Li
,
X.
,
2016
, “
Research on Thermal-Electric Coupling Effect of the Copper Pillar Bump in the Flip Chip Packaging
,” 17th International Conference on Electronic Packaging Technology (
ICEPT
), Wuhan, China, Aug. 16–19, pp.
1377
1380
.10.1109/ICEPT.2016.7583380
2.
Liu
,
P.
,
Yang
,
L.
, and
Liu
,
Y.
,
2015
, “
Electromigration Failure Investigation of Solder Joints in Flip Chip Packaging Under Thermal-Electric Coupling
,”
Electron. Compon. Mater.
, 34(10), pp.
95
98
.
3.
Kao
,
C. L.
, and
Lai
,
Y. S.
,
2004
, “
Electrothermal Coupling Analysis of Current Crowding and Joule Heating in Flip-Chip Package Assembly
,” Proceedings of Sixth Electronics Packaging Technology Conference (
EPTC 2004
), Singapore, Dec. 8–10, pp.
254
258
.10.1109/EPTC.2004.1396614
4.
Tummala
,
R. R.
,
Rymaszewski
,
E.
, and
Klopfenstein
,
A. G.
,
1997
,
Microelectronics Packaging Handbook ǁ Heat Transfer in Electronic Packages
, Chapter 4, Kluwer Academic Publishers, Alphen aan den Rijn, The Netherlands, pp.
314
403
.
5.
Li
,
J.
,
Zhang
,
X.
,
Zhou
,
C.
,
Zheng
,
J.
,
Ge
,
D.
, and
Zhu
,
W.
,
2016
, “
New Applications of an Automated System for High-Power LEDs
,”
IEEE/ASME Trans. Mechatronics
,
21
(
2
), pp.
1035
1042
.10.1109/TMECH.2015.2487507
6.
Chen
,
K. M.
,
2009
, “
Impact of Packaging Materials on Reliability Test for Low-K Wire Bond-Stacked Flip Chip CSP
,”
J. Mater. Sci. Mater. Electron.
,
20
(
5
), pp.
484
489
.10.1007/s10854-008-9756-4
7.
Tu
,
N. K.
,
2003
, “
Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects
,”
J. Appl. Phys.
,
94
(
9
), pp.
5451
5473
.10.1063/1.1611263
8.
Zhang
,
L.
,
Ou
,
S.
,
Huang
,
J.
,
Tu
,
K. N.
,
Gee
,
S.
, and
Nguyen
,
L.
,
2006
, “
Effect of Current Crowding on Void Propagation at the Interface Between Intermetallic Compound and Solder in Flip Chip Solder Joints
,”
Appl. Phys. Lett.
,
88
(
1
), p.
012106
.10.1063/1.2158702
9.
Chen
,
C.
,
Tong
,
H. M.
, and
Tu
,
K. N.
,
2010
, “
Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints
,”
Annual Review of Materials Research
,
D. R.
Clarke
,
M.
Ruhle
, and
F.
Zok
, eds., Vol.
40
,
pp.
531
555
.10.1146/annurev.matsci.38.060407.130253
10.
Le
,
V. N.
,
Benabou
,
L.
,
Etgens
,
V.
, and
Tao
,
Q. B.
,
2016
, “
Finite Element Analysis of the Effect of Process-Induced Voids on the Fatigue Lifetime of a Lead-Free Solder Joint Under Thermal Cycling
,”
Microelectron. Reliab.
,
65
, pp.
243
254
.10.1016/j.microrel.2016.07.098
11.
Zhang
,
S.
, and
Paik
,
K. W.
,
2016
, “
Effects of Cooling Processes and Silica Filler Contents of Solder ACFs (Anisotropic Conductive Films) on the Joints Reliability
,”
Electronic Components & Technology Conference
, Las Vegas, NV, May 31–June 3, pp.
737
742
.10.1109/ECTC.2016.152
12.
Li
,
J.
,
Ma
,
B.
,
Wang
,
R.
, and
Lei
,
H.
,
2011
, “
Study on a Cooling System Based on Thermoelectric Cooler for Thermal Management of High-Power LEDs
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2210
2215
.10.1016/j.microrel.2011.05.006
13.
Huang
,
M. L.
, and
Zhao
,
N.
,
2015
, “
Effect of Electromigration on the Type of Drop Failure of Sn–3.0Ag–0.5Cu Solder Joints in PBGA Packages
,”
J. Electron. Mater.
,
44
(
10
), pp.
3927
3933
.10.1007/s11664-015-3856-8
14.
Chao
,
B.
,
Chae
,
S.-H.
,
Zhang
,
X.
,
Lu
,
K.-H.
,
Ding
,
M.
,
Im
,
J.
, and
Ho
,
P. S.
,
2006
, “
Electromigration Enhanced Intermetallic Growth and Void Formation in Pb-Free Solder Joints
,”
J. Appl. Phys.
,
100
(
8
), p.
084909
.10.1063/1.2359135
15.
Son
,
K.
,
Ryu
,
H.
,
Kim
,
G.
,
Lee
,
J.
, and
Park
,
Y. B.
,
2018
, “
Electromigration Polarity Effect of Cu/Ni/Sn-Ag Microbumps for Three-Dimensional Integrated Circuits
,” IEEE 19th Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 6–9, pp.
1
3
.10.1109/EPTC.2017.8277504
16.
Park
,
Y. B.
,
Park
,
G. T.
,
Lee
,
B. R.
,
Kim
,
J. B.
, and
Son
,
K.
,
2020
, “
Solder Volume Effect on Electromigration Failure Mechanism of Cu/Ni/Sn-Ag Microbump
,”
IEEE Trans. Compon., Packaging, Manuf. Technol.
, 10(
10
), pp.
1589
1593
.10.1109/TCPMT.2020.3005644
17.
Liu
,
Z.
,
Li
,
J.
, and
Liu
,
X.
,
2020
, “
Novel Functionalized BN Nanosheets/Epoxy Composites With Advanced Thermal Conductivity and Mechanical Properties
,”
ACS Appl. Mater. Interfaces
,
12
(
5
), pp.
6503
6515
.10.1021/acsami.9b21467
18.
Orii
,
Y.
,
Toriyama
,
K.
,
Kohara
,
S.
,
Noma
,
H.
, and
Uenishi
,
K.
,
2011
, “
Electromigration Analysis of Peripheral Ultra Fine Pitch C2 Flip Chip Interconnection With Solder Capped Cu Pillar Bump
,” 2011 IEEE 61st Electronic Components and Technology Conference (
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
340
345
.10.1109/ECTC.2011.5898535
19.
Huang
,
M. L.
,
Ye
,
S.
, and
Zhao
,
N.
,
2011
, “
Current-Induced Interfacial Reactions in Ni/Sn-3Ag-0.5Cu/Au/Pd(P)/Ni-P Flip Chip Interconnect
,”
J. Mater. Res.
,
26
(
24
), pp.
3009
3019
.10.1557/jmr.2011.373
20.
Tsai
,
C. M.
,
Lin
,
Y. L.
,
Tsai
,
J. Y.
,
Lai
,
Y. S.
, and
Kao
,
C. R.
,
2006
, “
Local Melting Induced by Electromigration in Flip-Chip Solder Joints
,”
J. Electron. Mater.
,
35
(
5
), pp.
1005
1009
.10.1007/BF02692560
21.
Tu
,
K. N.
,
2006
, “
Electromigration in Flip Chip Solder Joints
,”
Stress-Induced Phenomena In Metallization: Eighth International Workshop On Stress-Induced Phenomena In Metallization
, AIP Conference Proceedings 817, pp.
327
338
.
22.
Liang
,
C. C. ÆS. W.
, 2006,
Electromigration Issues in Lead-Free Solder Joints
,
Springer US
, J. Mat. Sci., Vol. 18, pp.
259
268
.10.1007/s10854-006-9020-8
23.
Lee
,
S.
,
Guo
,
Y. X.
, and
Ong
,
C. K.
,
2005
, “
Electromigration Effect on Cu-Pillar(Sn) Bumps
,”
7th Electronic Packaging Technology Conference
, Singapore, Dec. 7–9, pp.
135
139
.10.1109/EPTC.2005.1614381
24.
Li
,
J.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Chen
,
Z.
,
Zhou
,
C.
,
Liu
,
X.
, and
Zhu
,
W.
,
2020
, “
The Thermal Cycling Reliability of Copper Pillar Solder Bump in Flip Chip Via Thermal Compression Bonding
,”
Microelectron. Reliab.
,
104
, p.
113543
.10.1016/j.microrel.2019.113543
25.
Wang
,
D.
,
Yuan
,
Y.
, and
Le
,
L.
,
2010
, “Failure Analysis of Sn-3.5Ag Solder Joints for FCOB Using 2-D FEA Model,”
11th International Conference on Electronic Packaging Technology & High Density Packaging
, Xi'an, China, Aug. 16–19, pp.
624
629
.10.1109/ICEPT.2010.5583882
26.
Moon
,
K. W.
,
Boettinger
,
W. J.
,
Kattner
,
U. R.
,
Biancaniello
,
F. S.
, and
Handwerker
,
C. A.
,
2000
, “
Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys
,”
J. Electron. Mater.
,
29
(
10
), pp.
1122
1136
.10.1007/s11664-000-0003-x
27.
Ghosh
,
G.
,
1999
, “
Thermodynamic Modeling of the Nickel-Lead-Tin System
,”
Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
,
30
(
6
), pp.
1481
1494
.10.1007/s11661-999-0085-x
You do not currently have access to this content.