Abstract

Over the last decade, several hyper-scale data center companies such as Google, Facebook, and Microsoft have demonstrated the cost-saving capabilities of airside economization with direct/indirect heat exchangers by moving to chiller-less air-cooled data centers. Under pressure from data center owners, information technology equipment OEMs like Dell and IBM are developing information technology equipment that can withstand peak excursion temperature ratings of up to 45 °C, clearly outside the recommended envelope, and into ASHRAEs A4 allowable envelope. As popular and widespread as these cooling technologies are becoming, airside economization comes with its challenges. There is a risk of premature hardware failures or reliability degradation posed by uncontrolled fine particulate and gaseous contaminants in presence of temperature and humidity transients. This paper presents an in-depth review of the particulate and gaseous contamination-related challenges faced by the modern-day data center facilities that use airside economization. This review summarizes specific experimental and computational studies to characterize the airborne contaminants and associated failure modes and mechanisms. In addition, standard lab-based and in-situ test methods for measuring the corrosive effects of the particles and the corrosive gases, as the means of testing the robustness of the equipment against these contaminants, under different temperature and relative humidity conditions are also reviewed. It also outlines the cost-sensitive mitigation techniques like improved filtration strategies and methods that can be utilized for efficient implementation of airside economization.

References

1.
Buyya
,
R.
,
Vecchiola
,
C.
, and
Selvi
,
S. T.
,
2013
, “
Mastering Cloud Computing: Foundations and Applications Programming
,”
Morgan Kaufmann
,
Burlington, MA
.
2.
Buyya
,
R.
,
Beloglazov
,
A.
, and
Abawajy
,
J.
,
2010
, “
Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges
,” Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (
PDPTA 2010
), Las Vegas, NV, July 12–15.https://www.researchgate.net/publication/45921163_Energy-Efficient_Management_of_Data_Center_Resources_for_Cloud_Computing_A_Vision_Architectural_Elements_and_Open_Challenges
3.
Krug
,
L.
,
Shackleton
,
M.
, and
Saffre
,
F.
,
2014
, “
Understanding the Environmental Costs of Fixed Line Networking
,”
Proceedings of the Fifth International Conference on Future Energy Systems
, Cambridge, UK, June 11–13, pp.
87
95
.https://dl.acm.org/doi/proceedings/10.1145/2602044
4.
Shehabi
,
A.
,
Smith
,
S. J.
,
Sartor
,
D. A.
,
Brown
,
R. E.
,
Herrlin
,
M.
,
Koomey
,
J. G.
,
Masanet
,
E. R.
,
Horner
,
N.
,
Azevedo
,
I. L.
, and
Lintner
,
W.
,
2016
, “
United States Data Center Energy Usage Report
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-1005775.
5.
Koomey
,
J.
,
2011
, “
Growth in Data Center Electricity Use 2005 to 2010
,”
A Report by Analytical Press, Completed at the Request of The New York Times
, Analytics Press, El Dorado Hills, CA, p.
161
.
6.
Rong
,
H.
,
Zhang
,
H.
,
Xiao
,
S.
,
Li
,
C.
, and
Hu
,
C.
,
2016
, “
Optimizing Energy Consumption for Data Centers
,”
Renewable Sustain. Energy Rev.
,
58
, pp.
674
691
.10.1016/j.rser.2015.12.283
7.
Zhou
,
R.
,
Wang
,
Z.
,
Bash
,
C. E.
, and
McReynolds
,
A.
,
2011
, “
Modeling and Control for Cooling Management of Data Centers With Hot Aisle Containment
,”
ASME
Paper No. IMECE2011-62506.10.1115/IMECE2011-62506
8.
ASHRAE
,
2015
, “
Thermal Guidelines for Data Processing Environments
,”
ASHRAE Datacom Series
, 4th ed.,
ASHRAE Inc
,
Atlanta, GA
.
9.
Patterson
,
M. K.
,
Atwood
,
D.
, and
Miner
,
J. G.
,
2009
, “
Evaluation of Air-Side Economizer Use in a Compute-Intensive Data Center
,”
ASME
Paper No. InterPACK2009-89358.10.1115/InterPACK2009-89358
10.
Lee
,
K. P.
, and
Chen
,
H. L.
,
2013
, “
Analysis of Energy Saving Potential of Air-Side Free Cooling for Data Centers in Worldwide Climate Zones
,”
Energy Build.
,
64
, pp.
103
112
.10.1016/j.enbuild.2013.04.013
11.
ASHRAE ANSI/ASHRAE/IES Standard 90.1
,
2019
, “
Energy Standard for Buildings Except for Low-Rise Residential Buildings
,”
ASHRAE
,
Atlanta, GA
.
12.
OUC, 2019,
Economizers
,”OUC, accessed Dec. 20,
2019
, https://ouc.bizenergyadvisor.com/article/economizers
13.
Intel Information Technology
,
2008
, “
Reducing Data Center Cost With an Air Economizer
,” IT@Intel Brief; Computer Manufacturing; Energy Efficiency, accessed June 7, 2021, https://www.intel.com/content/dam/doc/technology-brief/data-center-efficiency-xeon-reducing-data-center-cost-with-air-economizer-brief.pdf
14.
ISA
,
1985
, “
Environmental Conditions for Process Measurement and Control Systems: Airborne Contaminants
,” ISA-The Instrumentation Systems, and Automation Society, Research Triangle Park, NC, Standard No. ISA-71.04-1985.
15.
Cole
,
M.
,
Hedlund
,
L.
,
Hutt
,
G.
,
Kiraly
,
T.
,
Klein
,
L.
,
Nickel
,
S.
,
Singh
,
P.
, and
Tofil
,
T.
,
2010
, “
Harsh Environment Impact on Resistor Reliability
,”
SMTAI Conference Proceedings
, Orlando, FL, Oct. 24–28, pp.
1
9
.http://toc.proceedings.com/09516webtoc.pdf
16.
Official Journal of the European Union
,
2003
, “
Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment
,”
Official Journal of the European Union
, Luxembourg, pp.
L37/19
23
.
17.
Fu
,
H.
,
Chen
,
C.
,
Singh
,
P.
,
Zhang
,
J.
,
Kurella
,
A.
,
Chen
,
X.
,
Jiang
,
X.
,
Burlingame
,
J.
, and
Lee
,
S.
,
2012
, “
Investigation of Factors That Influence Creep Corrosion on Printed Circuit Boards
,”
SMTA Pan Pacific Microelectronics Symposium
, Kauai, HI, Feb. 14–16, pp.
14
16
.
18.
Fu
,
H.
,
Chen
,
C.
,
Singh
,
P.
,
Zhang
,
J.
,
Kurella
,
A.
,
Chen
,
X.
,
Jiang
,
X.
,
Burlingame
,
J.
, and
Lee
,
S.
,
2012
, “
Investigation of Factors That Influence Creep Corrosion on Printed Circuit Boards-Part 2
,”
Proceedings of SMTA International
, Olando, FL, Oct. 14–18, pp.
292
299
.
19.
Ready
,
W. J.
,
Turbini
,
L. J.
,
Nickel
,
R.
, and
Fischer
,
J.
,
1999
, “
A Novel Test Circuit for Automatically Detecting Electrochemical Migration and Conductive Anodic Filament Formation
,”
J. Elect. Mater.
,
28
(
11
), pp.
1158
1163
.10.1007/s11664-999-0151-6
20.
Ailor
,
W.
,
Dean
,
S.
, and
Haynie
,
F.
,
1974
, “
Corrosion in Natural Environments
,”
Presented at the Seventy-Sixth Annual Meeting American Society For Testing and Materials
, ASTM Special Technical Publication 558, Philadelphia, PA, June 24–29, pp.
7
21
.
21.
Rice
,
D. W.
,
Peterson
,
P.
,
Rigby
,
E. B.
,
Phipps
,
P. B. P.
,
Cappell
,
R. J.
, and
Tremoureux
,
R.
,
1981
, “
Atmospheric Corrosion of Copper and Silver
,”
J. Electrochem. Soc.
,
128
(
2
), pp.
275
284
.10.1149/1.2127403
22.
W. H.
Abbott
,
1989
, “
The Corrosion of Copper and Porous Gold in Flowing Mixed Gas Environments
,”
Proceedings of the Thirty Fifth Meeting of the IEEE Holm Conference on Electrical Contacts
, Chicago, IL, Sept. 18–20, pp.
141
146
.10.1109/HOLM.1989.77933
23.
Leygraf
,
C.
,
Wallinder
,
I. O.
,
Tidblad
,
J.
, and
Graedel
,
T.
,
2016
, “
Atmospheric Corrosion
,”
John Wiley & Sons
,
New York
.
24.
ASHRAE
,
T.C.
9.9,
2013
,
“Particulate and Gaseous Contamination in Datacom Environments
ASHRAE
,
Atlanta, GA
.
25.
Muller
,
C.
,
2014
, “
Reliability Concerns for Data Center ITE: Contamination Issues, Standards Actions, and Case Studies
,”
IPC APEX Conference & Exhibition
, Las Vegas, NV, Mar. 23–27.
26.
Shah
,
J. M.
,
2016
, “
Reliability Challenges in Airside Economization and Oil Immersion Cooling
,” M.S. dissertation,
The University of Texas at Arlington
,
Arlington, TX
.
27.
Singh
,
P.
,
Ruch
,
P.
,
Saliba
,
S.
, and
Muller
,
C.
,
2015
, “
Characterization, Prevention and Removal of Particulate Matter on Printed Circuit Boards
,”
IPC APEX
, San Diego, CA.
28.
Geng
,
H.
, and
Han
,
T.
,
2014
, “
Particulate and Gaseous Contamination in Data Centers
,”
Data Center Handbook
,
H.
Geng
, ed.,
John Wiley & Sons
,
New York
, pp.
307
312
.
29.
Purafil, 2020, “
Causes of Corrosion and Corrosion Monitoring
,” Purafil, Doraville, GA, accessed Jan. 19,
2020
, https://www.purafil.com/causes-corrosion-corrosion-monitoring/
30.
Zhang
,
J.
,
Zhang
,
R.
,
Schmidt
,
R.
,
Gilbert
,
J.
, and
Guo
,
B.
,
2019
, “
Impact of Gaseous Contamination and High Humidity on the Reliable Operation of Information Technology Equipment in Data Centers (1755-TRP)
,” ASHRAE, Atlanta, GA, Report No. D-RP-1755.
31.
Buchard
,
V.
,
Da Silva
,
A. M.
,
Colarco
,
P.
,
Krotkov
,
N.
,
Dickerson
,
R. R.
,
Stehr
,
J. W.
,
Mount
,
G.
,
Spinei
,
E.
,
Arkinson
,
H. L.
, and
He
,
H.
,
2014
, “
Evaluation of GEOS-5 Sulfur Dioxide Simulations During the Frostburg, MD 2010 Field Campaign
,”
Atmos. Chem. Phys.
,
14
(
4
), pp.
1929
1941
.10.5194/acp-14-1929-2014
32.
Song
,
B.
,
Azarisn
,
M. H.
, and
Pecht
,
M. G.
,
2013
, “
Effect of Temperature and Relative Humidity on the Impedance Degradation of Dust-Contaminated Electronics
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
C97
C105
.10.1149/2.024303jes
33.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
,
2016
, “
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
,”
John Wiley & Sons
,
New York
.
34.
Zhao
,
P. S.
,
Fan
Dong
,
Di
He
,
X. J.
Zhao
,
W. Z.
Zhang
,
Q.
Yao
, and
H. Y.
Liu.
,
2013
, “
Characteristics of Concentrations and Chemical Compositions for PM 2.5 in the Region of Beijing, Tianjin, and Hebei, China
,”
Atmos. Chem. Phys.
,
13
, pp.
4631
4644
.10.5194/acp-13-4631-2013
35.
U. S. Environmental Protection Agency
,
2014
, “
Air Trends 1995 Summary – Nitrogen Dioxide (NO2)
,” U. S. Environmental Protection Agency, Researech Park Triangle, NC, accessed Jan. 30, 2020, http://www.epa.gov/airtrends/aqtrnd95/no2.html
36.
Anand
,
R.
,
2018
, “
Development and Validation of the Deliquescent Relative Humidity Test Method for the Accumulated Particulate Matter Found in a Data Center Utilizing an Airside Economizer
,” M.S. dissertation,
The University of Texas at Arlington
,
Arlington, TX.
37.
Thirunavakkarasu
,
G.
,
2018
, “
Air Flow Pattern and Path Flow Simulation of Airborne Particulate Contaminants in a Cold-Aisle Containment High-Density Data Center Utilizing Airside Economization
,” M.S. dissertation,
The University of Texas at Arlington
,
Arlington, TX
.
38.
Saini
,
S.
,
2018
, “
Airflow Path and Flow Pattern Analysis of Sub-Micron Particulate Contaminants in a Data Center with Hot Aisle Containment System Utilizing Direct Air Cooling
,” M.S. dissertation,
The University of Texas at Arlington
,
Arlington, TX
.
39.
Comizzoli
,
R. B.
,
Frankenthal
,
R. P.
,
Lobnig
,
R. E.
, and
Peins
,
G.
,
1993
, “
Corrosion of Electronic Materials and Devices by Submicron Atmospheric Particles
,”
Electrochem. Soc., Interface
,
2
(
3
), pp.
26
33
.10.1126/science.234.4774.340
40.
The United States Environmental Protection Agency
,
2004
, “
The Particle Pollution Report-Current Understanding of Air Quality and Emissions through 2003
,” The United States Environmental Protection Agency, Research Park Triangle, NC, Report No. EPA 454-R-04-002, pp.
1
12
.
41.
Shah
,
J. M.
,
Awe
,
O.
,
Agarwal
,
P.
,
Akhigbe
,
I.
,
Agonafer
,
D.
,
Singh
,
P.
,
Kannan
,
N.
, and
Kaler
,
M.
,
2017
, “
Qualitative Study of Cumulative Corrosion Damage of IT Equipment in a Data Center Utilizing Air-Side Economizer
,”
ASME
Paper No. IMECE2016-66199.10.1115/IMECE2016-66199
42.
IPC Handbook
,
1990
, “
Surface Insulation Resistance Handbook
,”
IPC Handbook
,
Northbrook, IL
, Report No. IPC-9201.
43.
Zhan
,
S.
,
Azarian
,
M. H.
, and
Pecht
,
M. G.
,
2006
, “
Surface Insulation Resistance of Conformally Coated Printed Circuit Boards Processed with No-Clean Flux
,”
IEEE Trans. Elect. Packag. Manufact.
,
29
(
3)
, pp.
217
223
.10.1109/TEPM.2006.882496
44.
Zhong
,
X.
,
Chen
,
L.
,
Medgyes
,
B.
,
Zhang
,
Z.
,
Gao
,
S.
, and
Jakab
,
L.
,
2017
, “
Electrochemical Migration of Sn and Sn Solder Alloys: A Review
,”
RSC Adv.
,
7
(
45
), pp.
28186
28206
.10.1039/C7RA04368F
45.
Yang
,
S.
, and
Christou
,
A.
,
2007
, “
Failure Model for Silver Electrochemical Migration
,”
IEEE Trans. Dev. Mater. Reliab.
,
7
(
1
), pp.
188
196
.10.1109/TDMR.2007.891531
46.
Zhou
,
Y.
,
Yang
,
P.
,
Yuan
,
C.
, and
Huo
,
Y.
,
2013
, “
Electrochemical Migration Failure of the Copper Trace on Printed Circuit Board Driven by Immersion Silver Finish
,”
Chem. Eng. Trans.
,
33
, pp.
559
564
.10.3303/CET1333094
47.
Coleman
,
M. V.
, and
Winster
,
A. E.
,
1981
, “
Silver Migration in Thick Film Conductors and Chip Attachment Resins
,”
Microelectron. J.
,
12
(
4
), pp.
23
29
.10.1016/S0026-2692(81)80260-1
48.
Yang
,
S.
,
Wu
,
J.
, and
Christou
,
A.
,
2006
, “
Initial Stage of Silver Electrochemical Migration Degradation
,”
Microelectron. Reliab.
,
46
(
9–11
), pp.
1915
1921
.10.1016/j.microrel.2006.07.080
49.
Li
,
Y.
, and
Wong
,
C. P.
,
2006
, “
Monolayer Protection for Electrochemical Migration Control in Silver Nanocomposite
,”
Appl. Phys. Lett.
,
89
(
11
), p.
112
.10.1063/1.2353813
50.
Yoo
,
Y. R.
,
Nam
,
H. S.
,
Jung
,
J. Y.
,
Lee
,
S. B.
,
Park
,
Y. B.
,
Joo
,
Y. C.
, and
Kim
,
Y. S.
,
2007
, “
Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-Free Solders in Na2SO4 Solution
,”
Corr. Sci. Technol.
,
6
(
2
), pp.
50
55.
https://www.koreascience.or.kr/article/JAKO200721161743116.pdf
51.
Minzari
,
D.
,
Jellesen
,
M. S.
,
Møller
,
P.
, and
Ambat
,
R.
,
2011
, “
On the Electrochemical Migration Mechanism of Tin in Electronics
,”
Corros. Sci.
,
53
(
10
), pp.
3366
3379
.10.1016/j.corsci.2011.06.015
52.
Minzari
,
D.
,
Grumsen
,
F. B.
,
Jellesen
,
M. S.
,
Møller
,
P.
, and
Ambat
,
R.
,
2011
, “
Electrochemical Migration of Tin in Electronics and Microstructure of the Dendrites
,”
Corros. Sci.
,
53
(
5
), pp.
1659
1669
.10.1016/j.corsci.2011.01.009
53.
Ambat
,
R.
,
Jellesen
,
M. S.
,
Minzari
,
D.
,
Rathinavelu
,
U.
,
Johnsen
,
M. A.
,
Westermann
,
P.
, and
Møller
,
P.
,
2009
, “
Solder Flux Residues and Electrochemical Migration Failures of Electronic Devices
,”
Proceedings of the EUROCORR,
Nice, France, Sept. 6–10, Paper No. 8141.
54.
Minzari
,
D.
,
Jellesen
,
M. S.
,
Moller
,
P.
,
Wahlberg
,
P.
, and
Ambat
,
R.
,
2009
, “
Electrochemical Migration on Electronic Chip Resistors in Chloride Environments
,”
IEEE Trans. Dev. Mater. Reliab.
,
9
(
3
), pp.
392
402
.10.1109/TDMR.2009.2022631
55.
Verdingovas
,
V.
,
Jellesen
,
M. S.
, and
Ambat
,
R.
,
2013
, “
Influence of Sodium Chloride and Weak Organic Acids (Flux Residues) on Electrochemical Migration of Tin on Surface Mount Chip Components
,”
Corros. Eng., Sci. Technol.
,
48
(
6
), pp.
426
435
.10.1179/1743278213Y.0000000078
56.
Zhan
,
S.
,
Azarian
,
M. H.
, and
Pecht
,
M.
,
2008
, “
Reliability of Printed Circuit Boards Processed Using No-Clean Flux Technology in Temperature–Humidity–Bias Conditions
,”
IEEE Trans. Dev. Mater. Reliab.
,
8
(
2
), pp.
426
434
.10.1109/TDMR.2008.922908
57.
Natsui
,
M.
,
Asakawa
,
H.
,
Tanaka
,
T.
,
Ohki
,
Y.
,
Maeno
,
T.
, and
Okamoto
,
K.
,
2011
, “
Generation Mechanism of Electrochemical Migration in Printed Wiring Board Insulation
,”
IEEJ Trans. Elect. Electron. Eng.
,
6
(
3
), pp.
200
206
.10.1002/tee.20645
58.
Komatsu
,
D.
,
Takahashi
,
N.
,
Furutani
,
T.
,
Bhandari
,
R. K.
,
Sato
,
K.
,
Jinbo
,
N.
, and
Kariya
,
T.
,
2011
, “
Mechanism Verification of Electrochemical Migration of Fine Cu Wiring
,”
Jpn. J. Appl. Phys.
,
50
(
5S1
), p.
05EA10
.10.7567/JJAP.50.05EA10
59.
Kim
,
J. H.
, and
Park
,
S. D.
,
2013
, “
Acceleration of Applied Voltage on Metallic Ion Migration of Wires in NTC Thermistor Temperature Sensors
,”
Eng. Fail. Anal.
,
28
, pp.
252
263
.10.1016/j.engfailanal.2012.10.019
60.
He
,
X.
,
Azarian
,
M. H.
, and
Pecht
,
M. G.
,
2014
, “
Analysis of the Kinetics of Electrochemical Migration on Printed Circuit Boards Using Nernst-Planck Transport Equation
,”
Electrochim. Acta
,
142
, pp.
1
10
.10.1016/j.electacta.2014.06.041
61.
Medgyes, B., Illés, B., and Harsányi, G., 2012, “Electrochemical Migration Behaviour of Cu, Sn, Ag and Sn63/Pb37,”
J. Mater. Sci.: Mater. Electron.
, 23, pp.
551
556
.10.1007/s10854-011-0435-5
62.
Huang
,
H. L.
,
Pan
,
Z. Q.
,
Guo
,
X. P.
, and
Qiu
,
Y. B.
,
2014
, “
Effects of Direct Current Electric Field on Corrosion Behaviour Of Copper, Cl− Ion Migration Behaviour and Dendrites Growth Under Thin Electrolyte Layer
,”
Trans. Nonferrous Metals Soc. China
,
24
(
1
), pp.
285
291
.10.1016/S1003-6326(14)63059-4
63.
Harsanyi
,
G.
,
1995
, “
Electrochemical Processes Resulting in Migrated Short Failures in Microcircuits
,”
IEEE Trans. Compon. Packag. Manufact. Technol. Part A
,
18
(
3
), pp.
602
610
.10.1109/95.465159
64.
Sbar
,
N.
,
1976
, “
Bias-Humidity Performance of Encapsulated and Unencapsulated Ti-Pd-Au Thin-Film Conductors in an Environment Contaminated With Cl2
,”
IEEE Trans. Parts, Hybrids, Packag.
,
12
(
3
), pp.
176
181
.10.1109/TPHP.1976.1135141
65.
Brambilla
,
E.
,
Brambilla
,
P.
,
Canali
,
C.
,
Fantini
,
F.
, and
Vanzi
,
M.
,
1983
, “
Anodic Gold Corrosion in Plastic Encapsulated Devices
,”
Microelectron. Reliab.
,
23
(
3
), pp.
577
585
.10.1016/0026-2714(83)91186-1
66.
D. W.
Rice
,
R. J.
Cappell
,
P. B. P.
Phipps
and
P.
Peterson
,
1982
, “
Indoor Atmospheric Corrosion of Copper, Nickel, Cobalt, and Iron, in Atmospheric Corrosion
,”
W. H.
Ailor
, ed.,
Wiley
,
New York
.
67.
Hillman
,
C.
,
Arnold
,
J.
,
Binfield
,
S.
, and
Seppi
,
J.
,
2007
, “
Silver and Sulfur: Case Studies, Physics and Possible Solutions
,”
Proceedings of SMTA International
, Orlando, FL, Oct. 7–11, pp.
620
632
.https://www.dfrsolutions.com/hubfs/Resources/silver_and_sulfur_case_studies_physics_possible_solutions-1.pdf?t=1509565547846
68.
Kohman
,
G. T.
,
Hermance
,
H. W.
, and
Downes
,
G. H.
,
1955
, “
Silver Migration in Electrical Insulation
,”
Bell Syst. Tech. J.
,
34
(
6
), pp.
1115
1147
.10.1002/j.1538-7305.1955.tb03793.x
69.
Steppan
,
J. J.
,
Roth
,
J. A.
,
Hall
,
L. C.
,
Jeannotte
,
D. A.
, and
Carbone
,
S. P.
,
1987
, “
A review of Corrosion Failure Mechanisms During Accelerated Tests: Electrolytic Metal Migration
,”
J. Electrochem. Soc.
,
134
(
1
), pp.
175
190
.10.1149/1.2100401
70.
Lin
,
J. C.
, and
Chuang
,
J. Y.
,
1997
, “
Resistance to Silver Electrolytic Migration for Thick‐Film Conductors Prepared from Mixed and Alloyed Powders of Ag‐15Pd and Ag‐30Pd
,”
J. Electrochem. Soc.
,
144
(
5
), p.
1652
.10.1149/1.1837655
71.
Naguib
,
H.
, and
MacLaurin
,
B.
,
1979
, “
Silver Migration and the Reliability of Pd/Ag conductors in Thick-Film Dielectric Crossover Structures
,”
IEEE Trans. Compon. Hybrids, Manuf. Technol.
,
2
(
2
), pp.
196
207
.10.1109/TCHMT.1979.1135444
72.
Sease
,
C.
,
Selwyn
,
L. S.
,
Zubiate
,
S.
,
Bowers
,
D. F.
, and
Atkins
,
D. R.
,
1997
, “
Problems with Coated Silver: Whisker Formation and Possible Filiform Corrosion
,”
Stud. Conserv.
,
42
(
1
), pp.
1
10
.10.2307/1506570
73.
Daniels
,
V.
, and
Ward
,
S.
,
1982
, “
A Rapid Test for the Detection of Substances Which Will Tarnish Silver
,”
Stud. Conserv.
,
27
(
2
), pp.
58
60
.10.2307/1505987
74.
McNeilL
,
M. B.
, and
Little
,
B. J.
,
1992
, “
Corrosion Mechanisms for Copper and Silver Objects in Near-Surface Environments
,”
J. Am. Inst. Conserv.
,
31
(
3
), pp.
355
366
.10.1179/019713692806066574
75.
S. C.
Axtell
,
2002
, “
Failure of Thick Chip Resistor in Sulphur Containing Environments
,”
Microelectronic Failure Analysis: Desk Reference 2002 Supplement (ASM International
), pp.
161
173
.
76.
ASHRAE
,
2013
, “
Particulate and Gaseous Contamination Guidelines for Data Centers
,” 2nd ed., ASHRAE Datacom Series,
ASHRAE
,
Atlanta, GA
.
77.
Singh
,
P.
,
Zhang
,
Z. Q.
,
Kuo
,
G. U.
, and
Luo
,
G.
,
2009
, IBM Corporation, Private Communication.
78.
ANSI/ISA
,
2013
, “
Environmental Conditions for Process Measurement and Control Systems: Airborne Contaminants
,” The Instrumentation, Systems, and Automation Society, Report No. ANSI/ISA-71.04-2013.
79.
Reid
,
M.
,
Punch
,
J.
,
Ryan
,
C.
,
Franey
,
J.
,
Derkits
,
G. E.
,
Reents
,
W. D.
, and
Garfias
,
L. F.
,
2007
, “
The Corrosion of Electronic Resistors
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
4
), pp.
666
672
.10.1109/TCAPT.2007.901749
80.
Shah
,
J. M.
,
2018
, “
Characterizing Contamination to Expand ASHRAE Envelope in Airside Economization and Thermal and Reliability in Immersion Cooling of Data Centers
,”
Ph.D. dissertation
,
The University of Texas at Arlington
,
Arlington, TX
.http://hdl.handle.net/10106/28654
81.
Huang
,
H.
,
Dong
,
Z.
,
Chen
,
Z.
, and
Guo
,
X.
,
2011
, “
The Effects of Cl− Ion Concentration and Relative Humidity on Atmospheric Corrosion Behaviour of PCB-Cu Under Adsorbed Thin Electrolyte Layer
,”
Corros. Sci.
,
53
(
4
), pp.
1230
1236
.10.1016/j.corsci.2010.12.018
82.
Zhang
,
S. N.
,
Osterman
,
M.
,
Shrivastava
,
A.
,
Kang
,
R.
,
Pecht
,
M. G.
,
2010
, “
The Influence of H2S Exposure on Immersion-Silver-Finished PCBs Undermixed-Flow Gas Testing
,”
IEEE Trans. Dev. Mater. Reliab.
,
10
(
1
), pp.
71
81
.10.1109/TDMR.2009.2033194
83.
Gen
,
W.
,
Chen
,
X.
,
Hu
,
A.
, and
Li
,
M.
,
2011
, “
Effect of Ag on Oxidation of Cu-Base Leadframe
,”
Microelectron. Reliab.
,
51
(
4
), pp.
866
870
.10.1016/j.microrel.2010.10.010
84.
Zhao
,
P.
, and
Pecht
,
M.
,
2003
, “
Field Failure Due to Creep Corrosion on Components with Palladium Pre-Plated Leadframes
,”
Microelectron. Reliab.
,
43
(
5
), pp.
775
783
.10.1016/S0026-2714(03)00064-7
85.
Huang
,
H.
,
Guo
,
X.
,
Zhang
,
G.
, and
Dong
,
Z.
,
2011
, “
The Effects of Temperature and Electric Field on Atmospheric Corrosion Behaviour of PCB-Cu Under Absorbed Thin Electrolyte Layer
,”
Corros. Sci.
,
53
(
5
), pp.
1700
1707
.10.1016/j.corsci.2011.01.031
86.
Verdingovas
,
V.
,
Jellesen
,
M. S.
, and
Ambat
,
R.
,
2013
, “
Influence of Sodium Chloride and Weak Organic Acids (Flux Residues) on Electrochemical Migration of Tin on Surface Mount Chip Components
,” Corros. Eng., Sci. Technol.,
48
(
6
), pp.
426
435
.
87.
Zou
,
S.
,
Li
,
X.
,
Dong
,
C.
,
Ding
,
K.
, &
Xiao
,
K.
,
2013
, “
Electrochemical Migration, Whisker Formation, and Corrosion Behavior of Printed Circuit Board Under Wet H2S Environment
,”
Electrochim. Acta
,
114
, pp.
363
371
.10.1016/j.electacta.2013.10.051
88.
Kleber
,
C.
,
Wiesinger
,
R.
,
Schnöller
,
J.
,
Hilfrich
,
U.
,
Hutter
,
H.
, and
Schreiner
,
M.
,
2008
, “
Initial Oxidation of Silver Surfaces by S2− and S4+ Species
,”
Corros. Sci.
,
50
(
4
), pp.
1112
1121
.10.1016/j.corsci.2007.12.001
89.
Tran
,
T. T. M.
,
Fiaud
,
C.
, and
Sutter
,
E. M. M.
,
2005
, “
Oxide and Sulphide Layers on Copper Exposed to H2S Containing Moist Air
,”
Corros. Sci.
,
47
(
7
), pp.
1724
1737
.10.1016/j.corsci.2004.08.019
90.
Krumbein
,
S.
,
1969
, “
Corrosion Through Porous Gold Plate
,”
IEEE Trans. Parts, Mater. Packag.
,
5
(
2
), pp.
89
98
.10.1109/TPMP.1969.1136066
91.
Russo
,
S. G.
,
Henderson
,
M. J.
, and
Hinton
,
B. R. W.
,
2002
, “
Corrosion of An Aircraft Radar Antenna Waveguide
,”
Eng. Fail. Anal.
,
9
(
4
), pp.
423
434
.10.1016/S1350-6307(01)00028-0
92.
Huang
,
H.
,
Guo
,
X.
,
Zhang
,
G.
, and
Dong
,
Z.
,
2011
, “
Effect of Direct Current Electric Field on Atmospheric Corrosion Behavior of Copper Under Thin Electrolyte Layer
,”
Corros. Sci.
,
53
(
10
), pp.
3446
3449
.10.1016/j.corsci.2011.04.017
93.
Gil
,
H.
,
Calderón
,
J. A.
,
Buitrago
,
C. P.
,
Echavarría
,
A.
, and
Echeverría
,
F.
,
2010
, “
Indoor Atmospheric Corrosion of Electronic Materials in Tropical-Mountain Environments
,”
Corros. Sci.
,
52
(
2
), pp.
327
337
.10.1016/j.corsci.2009.09.019
94.
Desmarest
,
S. G.
,
2012
, “
Reliability of Pb-Free Solders for Harsh Environment Electronic Assemblies
,”
Mater. Sci. Technol.
,
28
(
3
), pp.
257
273
.10.1179/026708311X13135951528964
95.
Chen
,
C.
,
Lee
,
J. C.
,
Chang
,
G.
,
Lin
,
J.
,
Hsieh
,
C.
,
Liao
,
J.
, and
Huang
,
J.
,
2012
, “
The Surface Finish Effect on the Creep Corrosion in PCB
,”
IPC APEX EXPO Technical Conference Proceedings
, San Diego, CA, Feb. 28.https://smtnet.com/library/files/upload/creep-corrosion.pdf?_ga=2.143555191.359832615.1622568518-1368416416.1622568517
96.
Singh
,
P.
,
Palmer
,
L.
,
Fu
,
H.
,
Lee
,
D.
, and
Lee
,
J.
,
2017
, “
Round Robin Testing of Creep Corrosion Dependence on Relative Humidity
,”
SMTA International
,
Rosemont, IL
.
97.
Graedel
,
T. E.
,
Nassau
,
K.
, and
Franey
,
J. P.
,
1987
, “
Copper Patinas Formed in the Atmosphere—I. Introduction
,”
Corros. Sci.
,
27
(
7
), pp.
639
657
.10.1016/0010-938X(87)90047-3
98.
Graedel
,
T. E.
,
1987
, “
Copper Patinas Formed in the Atmosphere—III. A Semi-Quantitative Assessment of Rates and Constraints in the Greater New York Metropolitan Area
,”
Corros. Sci.
,
27
(
7
), pp.
741
769
.10.1016/0010-938X(87)90054-0
99.
Muller
,
A. J.
, and
McCrory-Joy
,
C.
,
1987
, “
Chromatographic Analysis of Copper Patinas Formed in the Atmosphere
,”
Corros. Sci.
,
27
(
7
), pp.
695
701
.10.1016/0010-938X(87)90051-5
100.
Nassau
,
K.
,
Gallagher
,
P. K.
,
Miller
,
A. E.
, and
Graedel
,
T. E.
,
1987
, “
The Characterization of Patina Components by X-Ray Diffraction and Evolved Gas Analysis
,”
Corros. Sci.
,
27
(
7
), pp.
669
684
.10.1016/0010-938X(87)90049-7
101.
Vernon
,
W. H. J.
,
1935
, “
A Laboratory Study of the Atmospheric Corrosion of Metals. Part II—Iron: The Primary Oxide Film. Part III—The Secondary Product or Rust (Influence of Sulphur Dioxide, Carbon Dioxide, and Suspended Particles on the Rusting of Iron
),”
Trans. Faraday Soc.
,
31
, pp.
1668
1700
.10.1039/TF9353101668
102.
Abbott
,
W.
,
1974
, “
Effects of Industrial Air Pollutants on Electrical Contact Materials
,”
IEEE Trans. Parts, Hybrids, Packag.
,
10
(
1
), pp.
24
27
.10.1109/TPHP.1974.1134830
103.
Sharma
,
S. P.
,
1978
, “
Atmospheric Corrosion of Silver, Copper, and Nickel—Environmental Test
,”
J. Electrochem. Soc.
,
125
(
12
), pp.
2005
2011
.10.1149/1.2131352
104.
Valdez Salas
,
B.
,
Schorr Wiener
,
M.
,
Zlatev Koytchev
,
R.
,
López Badilla
,
G.
,
Ramos Irigoyen
,
R.
,
Carrillo Beltrán
,
M.
,
Radnev Nedev
,
N.
,
Curiel Alvarez
,
M.
,
Rosas Gonzalez
,
N.
, and
Bastidas Rull
,
J. M.
,
2013
, “
Copper Corrosion by Atmospheric Pollutants in the Electronics Industry
,”
Int. Schol. Res. Not.
, p.
7
.10.1155/2013/846405
105.
Veleva
,
L.
,
Valdez
,
B.
,
Lopez
,
G.
,
Vargas
,
L.
, and
Flores
,
J.
,
2008
, “
Atmospheric Corrosion of Electro-Electronics Metals in Urban Desert Simulated Indoor Environment
,”
Corros. Eng., Sci. Technol.
,
43
(
2
), pp.
149
155
.10.1179/174327808X286275
106.
Pujara
,
K.
,
2015
, “
The Effect of Temperature and Relative Humidity on the Corrosion Rates of Copper and Silver in Electronic Equipment in the Presence of Sulfur Environment
,”
M.S. dissertation
,
The University of Texas at Arlington
,
Arlington, TX
.https://rc.library.uta.edu/utair/bitstream/handle/10106/27125/PUJARA-THESIS-2015.pdf?sequence=1&isAllowed=y
107.
Abbott
,
W. H.
,
1985
, “
Field Vs Laboratory Experience in the Evaluation of Electronic Components and Materials
,”
Mater. Perform.
,
24
(
8
), pp.
46
50
.
108.
Abbott
,
W. H.
,
1987
, “
Corrosion of Porous Gold Plating in Field and Laboratory Environments
,”
Plat. Surf. Finish.
,
74
(
11
), pp.
72
75
.
109.
Abbott
,
W. H.
,
1988
, “
The Development and Performance Characteristics of Mixed Flowing Gas Test Environment
,”
IEEE Trans. Compon. Hybrids, Manuf. Technol.
,
11
(
1
), pp.
22
35
.10.1109/33.2959
110.
Abbott
,
W. H.
,
1965
, “
The Measurement of Equipment Operating Environments to Evaluate Corrosion Related Failure Mechanisms
,” IEC Document 65, Montreal, PQ, Canada.
111.
Abbott
,
W.
,
1986
, “
The Corrosion of Porous Gold Plating
,”
Proceedings of 13th ICEC
, Lausanne, Switzerland.
112.
Rice
,
D. W.
,
1985
, “
Corrosion in The Electronics Industry
,” Corrosion/85, March 1985, Boston, MA, Paper No. 323.
113.
Zhang
,
S.
,
Shrivastava
,
A.
,
Osterman
,
M.
,
Pecht
,
M.
, and
Kang
,
R.
,
2009
, “
The Influence of SO2 Environments on Immersion Silver Finished PCBs by Mixed Flow Gas Testing
,”
International Conference on Electronic Packaging Technology & High Density Packaging
, Beijing, China, Aug. 10–13, pp.
116
122
.
114.
Cullen
D.
,
2005
, “
Surface Tarnish and Creeping Corrosion on Pb-free Circuit Board Surface Finishes
,”
IPC Works
,
Las Vegas, NV
, Oct. 20–22.
115.
Veale
,
R.
,
2005
, “
Reliability of PCB Alternate Surface Finishes in a Harsh Industrial Environment
,”
Proceedings of SMTA International
, Rosemont, IL, Sept. 25–29, pp.
494
499
.
116.
Mazurkiewicz
,
P.
,
2006
, “
Accelerated Corrosion of Printed Circuit Boards Due To High Levels of Reduced Sulfur Gasses in Industrial Environments
,”
Proceedings of 32nd International Symposium for Testing and Failure Analysis
, Austin, TX, Nov. 12–16, pp.
469
477
.
117.
Xu
,
C.
,
Flemming
,
D.
,
Demerkin
,
K.
,
2007
, “
Corrosion Resistance of PCB Surface Finishes
,”
Alcatel-Lucent, Apex
, Los Angeles, CA, pp.
20
22
.
118.
Zhao
,
P.
,
Pecht
,
M. G.
,
Kang
,
S.
, and
Park
,
S.
,
2006
, “
Assessment of Ni/Pd/Au–Pd and Ni/Pd/Au–Ag Preplated Leadframe Packages Subject to Electrochemical Migration and Mixed Flowing Gas Tests
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
4
), pp.
818
826
.10.1109/TCAPT.2006.885962
119.
Williams
,
D. W.
,
1988
, “
The Effect of Test Environment on the Creep of Base Metal Surface Films Over Precious Metal Inlays
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
11
(
1
), pp.
36
42
.10.1109/33.2960
120.
Li
,
J.
,
Broas
,
M.
,
Raami
,
J.
,
Mattila
,
T. T.
, and
Paulasto-Kröckel
,
M.
,
2014
, “
Reliability Assessment of a MEMS Microphone Under Mixed Flowing Gas Environment and Shock Impact Loading
,”
Microelectron. Reliab.
,
54
(
6–7
), pp.
1228
1234
.10.1016/j.microrel.2014.01.003
121.
Hannigan
,
K.
,
Reid
,
M.
,
Collins
,
M. N.
,
Dalton
,
E.
,
Xu
,
C.
,
Wright
,
B.
,
Demirkan
,
K.
,
Opila
,
R. L.
,
Reents
,
W. D.
,
Franey
,
J. P.
, and
Fleming
,
D. A.
,
2012
, “
Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments
,”
J. Electron. Mater.
,
41
(
3
), pp.
611
623
.10.1007/s11664-011-1799-2
122.
Reid
,
M.
,
Punch
,
J.
,
Grace
,
G.
,
Garfias
,
L. F.
, and
Belochapkine
,
S.
,
2006
, “
Corrosion Resistance of Copper-Coated Contacts
,”
J. Electrochem. Soc.
,
153
(
12
), p.
B513
.10.1149/1.2352042
123.
Martens
,
R.
, and
Pecht
,
M. G.
,
2000
, “
An Investigation of the Electrical Contact Resistance of Corroded Pore Sites on Gold Plated Surfaces
,”
IEEE Trans. Adv. Packag.
,
23
(
3
), pp.
561
567
.10.1109/6040.861574
124.
Maul
,
C.
,
McBride
,
J. W.
, and
Swingler
,
J.
,
2001
, “
Intermittency Phenomena in Electrical Connectors
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
3
), pp.
370
377
.10.1109/6144.946482
125.
ASTM
,
2013
, “
Standard Test Method for Porosity in Metallic Coatings by Humid Sulfur Vapor (“Flowers-of-Sulfur”)
,”
ASTM International
, West Conshohocken, PA, Standard No. B809-95.
126.
Mahadeo
,
D. M.
,
2015
, “
Copper Corrosion in the Flowers of Sulfur Test Environment
,” Ph.D. dissertation,
University of Maryland
,
College Park, MD
.
127.
Hindin
,
B.
,
Fernandez
,
J.
, and
Magnetics
,
P.
,
2003
, “
Testing of Conformal Coatings Using the Flowers-of-Sulfur Test
,”
Tri-Service Corrosion Conference
, pp.
17
21
.
128.
Hindin
,
B. S.
,
Kremser
,
D.
, and
Pledger
,
M.
,
2015
, “
Silver Sulfidation Kinetics in Sulfur-Bearing Environments
,”
Paper presented at the CORROSION 2015
, Dallas, TX, Paper No. NACE-2015-5791.https://onepetro.org/NACECORR/proceedingsabstract/CORR15/All-CORR15/NACE-2015-5791/123306
129.
Reid
,
M.
,
Collins
,
M. N.
,
Dalton
,
E.
,
Punch
,
J.
, and
Tanner
,
D. A.
,
2012
, “
Testing Method for Measuring Corrosion Resistance of Surface Mount Chip Resistors
,”
Microelectron. Reliab.
,
52
(
7
), pp.
1420
1427
.10.1016/j.microrel.2012.02.020
130.
Singh
,
Fabry
,
P.
,
M.
,
Green
,
W. B.
,
2017
, “
Flowers of Sulfur Creep Corrosion Testing of Populated Circuit Boards
,”
Proceedings of IPC APEX EXPO
, San Diego, CA, Feb. 11–16, pp.
1
6
.https://www.circuitinsight.com/pdf/flowers_sulfur_creep_erosion_testing_ipc.pdf
131.
Fu
,
H.
,
Singh
,
P.
,
Campbell
,
L.
,
Zhang
,
J.
,
Ables
,
W.
,
Lee
,
D.
,
Lee
,
J.
,
Li
,
J.
,
Zhang
,
S.
, and
Lee
,
S.
,
2014
, “
Testing Printed Circuit Boards for Creep Corrosion in Flowers of Sulfur Chamber
,”
Proceedings of IPC APEX Expo
, Las Vegas, NV, Mar. 25–27, pp.
25
27
.
132.
Fu
,
H., S.
,
Singh
,
C. P.
,
Guo
,
K.
,
Li
,
J.
,
Lee
,
S.
, and
Tong
,
G.
,
2015
, “
Testing Printed Circuit Boards for Creep Corrosion in Flowers of Sulfur Chamber: Phase 2A
,”
Proceedings of IPC APEX Expo
, San Diego, CA, Feb. 24–26.
133.
Fu
,
H.
,
Singh
,
P.
,
Kazi
,
A.
,
Ables
,
W.
,
Lee
,
D.
,
Lee
,
J.
,
Guo
,
K.
,
Li
,
J.
,
Lee
,
S.
,
Tong
,
G.
,
2015
, “
Testing Printed Circuit Boards for Creep Corrosion in Flowers of Sulfur Chamber: Phase 2
,”
SMTA Int'l
, Rosemont, IL, Sept. 27–Oct. 1.
134.
Singh
,
P.
,
Palmer
,
L.
,
Lee
,
D.
,
Lee
,
J.
,
Guo
,
K.
,
Liu
,
J.
,
Lee
,
S.
,
Tong
,
G.
,
Xu
,
C.
,
Fleming
,
D.
, and
Fu
,
H.
,
2017
, “
Relative Humidity Dependence of Creep Corrosion on Printed Circuit Boards
,”
International Conference on Electronics Packaging (ICEP)
, Yamagata, Japan, Apr. 19–22, pp.
41
46
.
135.
Singh
,
P.
,
Cole
,
M.
,
Kiraly
,
T.
,
Tan
,
J.
,
Rangaraj
,
R.
,
Wood
,
G.
, and
Chang
,
T.
,
2016
, “
Comparing Flowers of Sulfur and Mixed Flowing Gas Creep Corrosion Testing of Printed Circuit Boards
,”
SMTA International
, Rosemont, IL, Sept. 25–29, pp.
25
29
.
136.
Singh
,
P.
,
Fabry
,
M.
, and
Green
,
W. B.
,
2017
, “
Flowers of Sulfur Creep Corrosion Testing of Populated Circuit Boards
,”
Proceedings of IPC APEX Expo
, San Diego, CA, Feb. 12–16, pp.
13
16
.
137.
Muller
,
C.
,
2010
, “
What's Creeping Around in Your Data Center?
,”
ASHRAE 2010 Winter Conference (OR-10-023)
, Orlando, FL, Jan. 23–27, pp.
207
222
.
138.
Muller
,
C. O.
,
1991
, “
Multiple Contaminant Gas Effects on Electronic Equipment Corrosion
,”
Corrosion
47
(
2
), pp.
146
151
.10.5006/1.3585230
139.
Hamann
,
H. F.
,
van Kessel
,
T. G.
,
Iyengar
,
M.
,
Chung
,
J. Y.
,
Hirt
,
W.
,
Schappert
,
M. A.
,
Claassen
,
A.
,
Cook
,
J. M.
,
Min
,
W.
,
Amemiya
,
Y.
, and
López
,
V.
,
2009
, “
Uncovering Energy-Efficiency Opportunities in Data Centers
,”
IBM J. Res. Dev.
,
53
(
3
), pp.
1
12
.10.1147/JRD.2009.5429023
140.
Awe
,
O. M.
, “
The Effects of Temperature and Relative Humidity on Exposure of Legacy and Future Technology Hardware, Under Real Data Center Conditions in an ANSI/ISA Classified G2 Environment
,” Ph.D. dissertation,
The University of Texas at Arlington
,
Arlington, TX
.
141.
IBM, 2020, “
IBM Archives: IBM 350 Disk Storage Unit
,” IBM, Armonk, New York, Jan. 30,
2020
, https://www.ibm.com/ibm/history/exhibits/storage/storage_350.html
142.
IBM, 1998, “
OEM Hard Disk Drive Specifications for DDRS-39130/DDRS-34560 3.5-Inch Hard Disk Drive (9130/4560 MB) Revision (2.0)
,” IBM, Armonk, New York, accessed
Jan. 30,
2020
, http://ps-2.kev009.com/ohlandl/IBM_HD/ddrs_spw.pdf
143.
Khurshudov
,
A.
, and
Waltman
,
R. J.
,
2001
, “
Tribology Challenges of Modern Magnetic Hard Disk Drives
,”
Wear
,
251
(
1–12
), pp.
1124
1132
.10.1016/S0043-1648(01)00723-2
144.
Shah
,
H.
,
2013
, “
Gaseous Corrosion In Hard Disk Drive: A Computational Study
,” Master's thesis,
The University of Texas at Arlington
,
Arlington, TX
.
145.
Bagul
,
T.
,
Pujara
,
K.
,
Shah
,
J.
,
Awe
,
O.
, &
Agonafer
,
D.
,
2015
, “
Computational Study of Behavior of Gas Absorption in Data Center Equipment and its Effects on the Rate of Corrosion/Contamination
,”
ASME
Paper No. IPACK2015-48049.10.1115/IPACK2015-48049
146.
Dai
,
J.
,
Das
,
D.
, and
Pecht
,
M.
,
2012
, “
Prognostics-Based Risk Mitigation for Telecom Equipment Under Free Air Cooling Conditions
,”
Appl. Energy
,
99
, pp.
423
429
.10.1016/j.apenergy.2012.05.055
147.
Atwood
,
D.
, and
Miner
,
J. G.
,
2008
, “
Reducing Data Center Cost with an Air Economizer
,” White Paper: Intel Corporation, Santa Clara, CA, accessed Jan. 20, 2020, https://www.intel.com/content/dam/doc/technology-brief/data-center-efficiency-xeon-reducing-data-center-cost-with-air-economizer-brief.pdf
148.
Shah
,
J. M.
,
Awe
,
O.
,
Gebrehiwot
,
B.
,
Agonafer
,
D.
,
Singh
,
P.
,
Kannan
,
N.
, and
Kaler
,
M.
,
2017
, “
Qualitative Study of Cumulative Corrosion Damage of Information Technology Equipment in a Data Center Utilizing Air-Side Economizer Operating in Recommended and Expanded ASHRAE Envelope
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020903
.10.1115/1.4036363
149.
Shah
,
J. M.
,
Misrak
,
A.
,
Agonafer
,
D.
, and
Kaler
,
M.
,
2019
, “
Identification and Characterization of Particulate Contaminants Found at a Data Center Using Airside Economization
,”
ASME J. Electron. Packag.
,
141
(
3
), p. 0
31003
.10.1115/1.4043481
150.
Awe
,
O.
,
Shah
,
J. M.
,
Agonafer
,
D.
,
Singh
,
P.
,
Kannan
,
N.
, and
Kaler
,
M.
,
2020
, “
Experimental Description of Information Technology Equipment Reliability Exposed to a Data Center Using Airside Economizer Operating in Recommended and Allowable ASHRAE Envelopes in an ANSI/ISA Classified G2 Environment
,”
ASME. J. Electron. Packag.
,
142
(
2
), p. 0
24501
.10.1115/1.4046556
151.
Shah
,
J. M.
,
Anand
,
R.
,
Saini
,
S.
,
Cyriac
,
R.
,
Agonafer
,
D.
,
Singh
,
P.
, and
Kaler
,
M.
,
2019
, “
Development of a Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center
,”
ASME
Paper No. IPACK2019-6601.10.1115/IPACK2019-6601
152.
Shah
,
J. M.
,
Anand
,
R.
,
Singh
,
P.
,
Saini
,
S.
,
Cyriac
,
R.
,
Agonafer
,
D.
, and
Kaler
,
M.
,
2020
, “
Development of a Precise and Cost-Effective Technique to Measure Deliquescent Relative Humidity of Particulate Contaminants and Determination of the Operating Relative Humidity of a Data Center Utilizing Airside Economization
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041103
.10.1115/1.4047469
153.
Adafruit, 2020, “
Adafruit INA219 Current Sensor Breakout
,” Adafruit, New York, accessed Jan. 2020, https://learn.adafruit.com/adafruit-ina219-current-sensor-breakout
154.
Jones
,
P. J.
, and
Whittle
,
G. E.
,
1992
, “
Computational Fluid Dynamics for Building Airflow Prediction—Current Status and Capabilities
,”
Build. Environ.
,
27
(
3
), pp.
321
338
.10.1016/0360-1323(92)90033-L
155.
Chen
,
Q.
, and
Zhang
,
Z.
,
2005
, “
Prediction of Particle Transport in Enclosed Environment
,”
China Particuol.
,
3
(
6
), pp.
364
372
.10.1016/S1672-2515(07)60216-4
156.
Seymour
,
M. J.
,
Alani
,
A.
,
Manning
,
A.
, and
Jiang
,
J.
,
2000
, “
CFD Based Airflow Modelling to Investigate the Effectiveness of Control Methods Intended to Prevent the Transmission of Airborne Organisms
,”
Proceedings of Roomvent 2000, Air Distribution in Rooms: Ventilation for Health and Sustainable Environment
, Reading, UK, July 9–12, pp.
77
82
.
157.
Thirunavakkarasu
G.
,
Satyam
S.
,
Shah
,
J. M.
, and
Agonafer
,
D.
,
2018
, “
Air Flow Pattern and Path Flow Simulation of Airborne Particulate Contaminants in a High-Density Data Center Utilizing Airside Economization
,”
ASME
Paper No. IPACK2018-8436.10.1115/IPACK2018-8436
158.
Saini
,
S.
,
Shahi
,
P.
,
Bansode
,
P.
,
Siddarth
,
A.
,
Agonafer
,
D.
,
2020
, “
CFD Investigation of Dispersion of Airborne Particulate Contaminants in a Raised Floor Data Center
,”
36th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
, San Jose, CA, Mar. 16–20, pp.
39
47
.
159.
QUARG,
1996
, “
Airborne Particulate Matter in the United Kingdom-Third QUARG Report
,”
Urban Air Review Group, UK Air Information Resource
,
London, UK.
160.
Harrison
,
R.
, and
Yin
,
J.
,
2004
, “
Characterisation of Particulate Matter in the United Kingdom
,” Report produced for Defra, the National Assembly for Wales, the Department of the Environment in Northern Ireland and the Scottish Executive, The University of Birmingham (REF. CPEA 6), Birmingham, UK.
161.
Čupr
,
P.
,
Flegrová
,
Z.
,
Franců
,
J.
,
Landlová
,
L.
, and
Klánová
,
J.
,
2013
, “
Mineralogical, Chemical and Toxicological Characterization of Urban Air Particles
,”
Environ. Int.
,
54
, pp.
26
34
.10.1016/j.envint.2012.12.012
162.
Frachtenberg
,
E.
,
Lee
,
D.
,
Magarelli
,
M.
,
Mulay
,
V.
, and
Park
,
J.
,
2012
, “
Thermal Design in the Open Compute Data Center
,”
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
, San Diego, CA, May 30-June 1, pp.
530
538
.
163.
Zhang
,
J.
,
Zhang
,
R.
,
Schmidt
,
R.
,
Gilbert
,
J.
,
Guo
,
B.
,
2019
, “
Impact of Gaseous Contamination and High Humidity on the Reliable Operation of Information Technology Equipment in Data Centers
,” ASHRAE, Atlanta, GA, Report No. ASHRAE RP-1755.
164.
Singh
,
P.
,
Klein
,
L.
,
Agonafer
,
D.
,
Shah
,
J. M.
, and
Pujara
,
K. D.
,
2015
, “
Effect of Relative Humidity, Temperature and Gaseous and Particulate Contaminations on Information Technology Equipment Reliability
,”
ASME
Paper No. IPACK2015-48176.10.1115/IPACK2015-48176
165.
Sippola
,
M. R.
,
2002
, “
Particle Deposition in Ventilation Ducts
,” Lawrence Berkeley National Lab (LBNL), Berkley, CA, Report No. LBNL-52189.
You do not currently have access to this content.