Abstract

In order to meet the increasing performance demand of high-performance computing and edge computing, thermal design power (TDP) of central processing unit (CPU) and graphics processing unit (GPU) needs to increase. This creates thermal challenge to corresponding electronic packages with respect to heat dissipation. In order to address this challenge, two-phase immersion cooling is gaining attention as its primary mode of heat of removal is via liquid-to-vapor phase change, which can occur at relatively low and constant temperatures. In this paper, an integrated heat spreader (IHS) with boiling enhancement features is proposed. Three-dimensional metal printing and metal injection molding (MIM) are the two approaches used to manufacture the new IHS. The resultant IHS with boiling enhancement features is used to build thermal test vehicles (TTV) by following the standard electronic package assembly process. Experimental results demonstrate that boiling enhanced TVs improved two-phase immersion cooling capability by over 50% as compared to baseline TTV without boiling enhanced features.

References

1.
Sarangi
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
Effect of Particle Size on Surface-Coating Enhancement of Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
81
, pp.
103
113
.10.1016/j.ijheatmasstransfer.2014.09.052
2.
Hsu
,
Y.-T.
,
Li
,
J.-X.
, and
Lu
,
M.-C.
,
2018
, “
Enhanced Immersion Cooling Using Two-Tier Micro- and Nano-Structures
,”
Appl. Therm. Eng.
,
131
, pp.
864
873
.10.1016/j.applthermaleng.2017.12.067
3.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhancement of Saturation Boiling of PF-5060 on Microporous Copper Dendrite Surfaces
,”
ASME. J. Heat Trans. ASME
,
132
(
7
), p.
071501
.10.1115/1.4000975
4.
Gajghate
,
S. S.
,
Barathula
,
S.
,
Das
,
S.
,
Saha
,
B. B.
, and
Bhaumik
,
S.
,
2020
, “
Experimental Investigation and Optimization of Pool Boiling Heat Transfer Enhancement Over Graphene-Coated Copper Surface
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1393
1411
.10.1007/s10973-019-08740-5
5.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2020
, “
Salt Templated and Graphene Nanoplatelets Draped Copper (GNP-draped-Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Sci. Rep.
,
10
(
1
), p.
11941
.10.1038/s41598-020-68672-1
6.
Ghiaasiaan
,
S.
, and
Mostafa
,
2008
,
Two-Phase Flow, Boiling and Condensation in Conventional and Miniature Systems
,
Cambridge University Press
, Cambridge, UK, pp.
287
318
.
7.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Square Pin-Finned Surfaces in FC-72
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
23
35
.10.1016/S0017-9310(02)00257-0
8.
Legay
,
M.
,
Gondrexon
,
N.
,
Person
,
S. L.
,
Boldo
,
P.
, and
Bontemps
,
A.
,
2011
, “
Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
,”
Int. J. Chem. Eng.
,
2011
, pp.
1
17
.10.1155/2011/670108
9.
Yabe
,
A.
,
Nakayama
,
W.
, and
Di Marco
,
P.
,
1999
, “
Enhancement Techniques in Pool Boiling
,”
Handbook of Phase Change: Boiling and Condensation
,
Taylor & Francis
,
Philadelphia, PA
, pp.
121
141
(editor-in-chief
Satish G.
Kandlikar
, co-editors
Masahiro
Shoji
and
Vijay K.
Dhir
).
10.
Mudawar
,
I.
, and
Anderson
,
T. M.
,
1993
, “
Optimization of Enhanced Surfaces for High Flux Chip Cooling by Pool Boiling
,”
ASME J. Electron. Packag.
,
115
(
1
), pp.
89
100
.10.1115/1.2909306
11.
Zhang
,
S.
,
Tang
,
Y.
,
Zeng
,
J.
,
Yuan
,
W.
,
Chen
,
J.
, and
Chen
,
C.
,
2016
, “
Pool Boiling Heat Transfer Enhancement by Porous Interconnected Microchannel Nets at Different Liquid Subcooling
,”
Appl. Therm. Eng.
,
93
, pp.
1135
1144
.10.1016/j.applthermaleng.2015.10.044
12.
Gregorcic
,
P.
,
Zupancic
,
M.
,
Iztok
,
G.
,
2018
, “
Scalable Surface Micro Structuring by Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low Surface-Tension Fluids
,” accessed Oct. 25, 2021, www.nature.com/scientificreports
13.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
14.
Mori
,
S.
, and
Okuyama
,
K.
,
2009
, “
Enhancement of the Critical Heat Flux in Saturated Pool Boiling Using Honeycomb Porous Media
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
946
951
.10.1016/j.ijmultiphaseflow.2009.05.003
15.
Zhao
,
H.
,
Dash
,
S.
,
Dhillon
,
N. S.
,
Kim
,
S.
,
Lettiere
,
B.
,
Varanasi
,
K. V.
, and
Hart
,
A. J.
,
2019
, “
Microstructured Ceramic-Coated Carbon Nanotube Surface for High Heat Flux Pool Boiling
,”
Appl. Nano Mater.
,
2
(
9
), pp.
5538
5545
.10.1021/acsanm.9b01116
16.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
,
2003
, “
Effects of Varying Geometrical Parameters on Boiling From Microfabricated Enhanced Structures
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
103
109
.10.1115/1.1513575
17.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Sites on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
216
.10.1115/1.3684339
18.
Wu
,
Z.
, and
Sundén
,
B.
,
2014
, “
On Further Enhancement of Single-Phase and Flow Boiling Heat Transfer in Micro/Minichannels
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
11
27
.10.1016/j.rser.2014.07.171
19.
Auracher
,
H.
, and
Buchholz
,
M.
,
2005
, “
Experiments on the Fundamental Mechanisms of Boiling Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
, 27(
1
), pp. 1–22.10.1590/S1678-58782005000100001
You do not currently have access to this content.