Abstract

In this paper, we present the results of an experimental study involving low thermal resistance cooling of high heat flux power electronics in a forced convection mode, as well as in a thermosiphon (buoyancy-driven) mode. The force-fed manifold microchannel cooling concept was utilized to substantially improve the cooling performance. In our design, the heat sink was integrated with the simulated heat source, through a single solder layer and substrate, thus reducing the total thermal resistance. The system was characterized and tested experimentally in two different configurations: the passive (buoyancy-driven) loop and the forced convection loop. Parametric studies were conducted to examine the role of different controlling parameters. It was demonstrated that the thermosiphon loop can handle heat fluxes in excess of 200 W/cm2 with a cooling thermal resistance of 0.225 (K cm2)/W for the novel cooling concept and moderate fluctuations in temperature. In the forced convection mode, a more uniform temperature distribution was achieved, while the heat removal performance was also substantially enhanced, with a corresponding heat flux capacity of up to 500 W/cm2 and a thermal resistance of 0.125 (K cm2)/W. A detailed characterization leading to these significant results, a comparison between the performance between the two configurations, and a flow visualization in both configurations are discussed in this paper.

References

1.
Chu
,
R. C.
,
2004
, “
The Challenges of Electronic Cooling: Past, Current and Future
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
491
500
.10.1115/1.1839594
2.
Liu
,
Q.
,
Fukuda
,
K.
, and
Sutopo
,
P. F.
,
2014
, “
Experimental Study on Thermosyphon for Shipboard High-Power Electronics Cooling System
,”
Heat Transfer Eng.
,
35
(
11–12
), pp.
1077
1083
.10.1080/01457632.2013.863096
3.
Park
,
H.
,
2014
, “
Numerical Assessment of Liquid Cooling System for Power Electronics in Fuel Cell Electric Vehicles
,”
Int. J. Heat Mass Transfer
,
73
, pp.
511
520
.10.1016/j.ijheatmasstransfer.2014.02.038
4.
Deisenroth
,
D. C.
, and
Ohadi
,
M.
,
2019
, “
Thermal Management of High-Power Density Electric Motors for Electrification of Aviation and Beyond
,”
Energies
,
12
(
19
), p.
3594
.10.3390/en12193594
5.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
,
2006
, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
,
94
(
8
), pp.
1549
1570
.10.1109/JPROC.2006.879791
6.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
7.
Kandlikar
,
S. G.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.10.1080/01457630591003655
8.
Estes
,
K. A.
, and
Mudawar
,
I.
,
1995
, “
Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
2985
2996
.10.1016/0017-9310(95)00046-C
9.
Adera
,
S.
,
Antao
,
D.
,
Raj
,
R.
, and
Wang
,
E. N.
,
2016
, “
Design of Micropillar Wicks for Thin-Film Evaporation
,”
Int. J. Heat Mass Transfer
,
101
, pp.
280
294
.10.1016/j.ijheatmasstransfer.2016.04.107
10.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes: Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.10.1016/S1359-4311(03)00159-5
11.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1993
, “
Jet Impingement Boiling
,”
Adv. Heat Transfer
,
23
(
C
), pp.
1
132
.10.1016/S0065-2717(08)70005-4
12.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling—Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.10.1016/j.ijheatmasstransfer.2017.06.029
13.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1703
1713
.10.1016/S0017-9310(02)00479-9
14.
Chu
,
W. X.
,
Huang
,
K. C.
,
Amer
,
M.
, and
Wang
,
C. C.
,
2019
, “
Experimental and Numerical Investigations on Jet Impingement Cooling for Electronic Modules
,”
ASME J. Heat Transfer
,
141
(
10
), p.
102201
.10.1115/1.4044149
15.
Penumadu
,
P. S.
, and
Rao
,
A. G.
,
2017
, “
Numerical Investigations of Heat Transfer and Pressure Drop Characteristics in Multiple Jet Impingement System
,”
Appl. Therm. Eng.
,
110
, pp.
1511
1524
.10.1016/j.applthermaleng.2016.09.057
16.
Gao
,
X.
, and
Li
,
R.
,
2019
, “
Spray Impingement Cooling: The State of the Art
,” Advance Cooling Technology Application,
IntechOpen
, London, UK.10.5772/intechopen.80256
17.
Panão
,
M. R. O.
, and
Moreira
,
A. L. N.
,
2005
, “
Thermo- and Fluid Dynamics Characterization of Spray Cooling With Pulsed Sprays
,”
Exp. Therm. Fluid Sci.
,
30
(
2
), pp.
79
96
.10.1016/j.expthermflusci.2005.03.020
18.
Visaria
,
M.
, and
Mudawar
,
I.
,
2008
, “
Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2398
2410
.10.1016/j.ijheatmasstransfer.2007.08.010
19.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.10.1080/01457630701421703
20.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Elect. Device Lett. EDL
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
21.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.10.1109/TDMR.2004.840855
22.
Agostini
,
F.
, and
Agostini
,
B.
,
2011
, “
Flexible Two-Phase Thermosyphon for Power Electronic Cooling
,”
IEEE 33rd International Telecommunications Energy Conference (INTELEC)
,
IEEE
, Amsterdam, The Netherlands, Oct.
9
13
.
23.
Jafari
,
D.
,
Franco
,
A.
,
Filippeschi
,
S.
, and
Di Marco
,
P.
,
2016
, “
Two-Phase Closed Thermosyphons: A Review of Studies and Solar Applications
,”
Renewable and Sustainable Energy Reviews
,
Pergamon
, pp.
575
593
.10.1016/j.rser.2015.09.002
24.
Seuret
,
A.
,
Iranfar
,
A.
,
Zapater
,
M.
,
Thome
,
J.
, and
Atienza
,
D.
,
2018
, “
Design of a Two-Phase Gravity-Driven Micro-Scale Thermosyphon Cooling System for High-Performance Computing Data Centers
,”
Proceedings of the 17th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm
, San Diego, CA, May 29–June 1, pp.
587
595
.10.1109/ITHERM.2018.8419531
25.
Cataldo
,
F.
, and
Thome
,
J. R.
,
2017
, “
Experimental Evaluation of the Thermal Performances of a Thermosyphon Cooling System Rejecting Heat by Natural and Forced Convection
,”
Appl. Therm. Eng.
,
127
(
D
), pp.
1404
1415
.10.1016/j.applthermaleng.2017.08.166
26.
Ong
,
C. L.
,
Amalfi
,
R. L.
,
Marcinichen
,
Lamaison
,
N.
, and
Thome
,
J. B. J. R.
,
2017
, “
Two-Phase Mini-Thermosyphon for Cooling of Datacenters: Experiments, Modeling and Simulations
,”
ASME
Paper No. IPACK2017-74030.10.1115/IPACK2017-74030
27.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2009
, “
Instability Phenomena in a Two-Phase Microchannel Thermosyphon
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1701
1708
.10.1016/j.ijheatmasstransfer.2008.10.005
28.
Ohadi
,
M.
,
Choo
,
K.
,
Dessiatoun
,
D.
, and
Cetegen
,
E.
,
2013
, “
Next Generation Microchannel Heat Exchangers
,”
SpringerBriefs in Applied Sciences and Technology
,
Springer
,
New York
, pp.
1
111
.
29.
Bae
,
D. G.
,
Mandel
,
R. K.
,
Dessiatoun
,
S. V.
,
Rajgopal
,
S.
,
Roberts
,
S. P.
,
Mehregany
,
M.
, and
Ohadi
,
M. M.
,
2017
, “
Embedded Two-Phase Cooling of High Heat Flux Electronics on Silicon Carbide (SiC) Using Thin-Film Evaporation and an Enhanced Delivery System (FEEDS) Manifold-Microchannel Cooler
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Orlando, FL, May 30–June 2, pp.
466
472
.10.1109/ITHERM.2017.7992511
30.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
117
, pp.
319
330
.10.1016/j.ijheatmasstransfer.2017.10.015
31.
Battaglia
,
F.
,
Singer
,
F.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2017
, “
Comparison of Near Source Two-Phase Flow Cooling of Power Electronics in Thermosiphon and Forced Convection Modes
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), IEEE, Orlando, FL, May 30–June 2, pp.
752
758
.10.1109/ITHERM.2017.7992561
32.
Mandel
,
R.
,
Shooshtari
,
A.
,
Dessiatoun
,
S.
, and
Ohadi
,
M.
,
2013
, “
Streamline Modeling of Manifold Microchannels in Thin Film Evaporation
,”
ASME
Paper No. HT2013-17731. 10.1115/HT2013-17731
33.
Mandel
,
R.
,
Dessiatoun
,
S.
, and
Ohadi
,
M.
,
2016
, “
Embedded Two-Phase Cooling of High Flux Electronics Using a Directly Bonded FEEDS Manifold
,”
Proceedings of the 15th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm
, Las Vegas, NV, May 31–June 3, pp.
77
84
.10.1109/ITHERM.2016.7517531
34.
Bae
,
D.
,
Mandel
,
R.
, and
Ohadi
,
M.
,
2017
, “
Effect of Bonding Structure and Heater Design on Performance Enhancement of Feeds Embedded Manifold-Microchannel Cooling
,”
ASME
Paper No. IPACK2017-74158.10.1115/IPACK2017-74158
35.
Micro Deformation Technology,
2019
, “MicroCool Liquid Cooling Solutions,” Micro Deformation Technology, accessed Sept. 16, https://www.microcooling.com/technology/micro-deformation-technology/
36.
Kukowski
,
R.
,
2003
, “
MDT: Micro Deformation Technology
,”
ASME
Paper No. IMECE2003-42861.10.1115/IMECE2003-42861
37.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1994
, “
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,”
NIST Technical Note
1297. https://emtoolbox.nist.gov/Publications/NISTTechnicalNote1297s.pdf
38.
Tong
,
Z.
,
Liu
,
X. H.
,
Li
,
Z.
, and
Jiang
,
Y.
,
2016
, “
Experimental Study on the Effect of Fill Ratio on an R744 Two-Phase Thermosyphon Loop
,”
Appl. Therm. Eng.
,
99
, pp.
302
312
.10.1016/j.applthermaleng.2016.01.065
39.
Asadi
,
M.
,
Xie
,
G.
, and
Sunden
,
B.
,
2014
, “
A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
34
53
.10.1016/j.ijheatmasstransfer.2014.07.090
40.
Deisenroth
,
D. C.
,
Bar-Cohen
,
A.
, and
Ohadi
,
M.
,
2017
, “
Geometry Effects on Two-Phase Flow Regimes in a Diabatic Manifolded Microgap Channel
,”
ASME
Paper No. IPACK2017-74287.10.1115/IPACK2017-74287
41.
Deisenroth
,
D. C.
,
Bar-Cohen
,
A.
, and
Ohadi
,
M.
,
2019
, “
Heat Transfer and Two-Phase Flow Regimes in Manifolded Microgaps - R245fa Empirical Results
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Las Vegas, NV, May 28–31, pp.
1168
1179
.10.1109/ITHERM.2019.8757391
You do not currently have access to this content.