Abstract

In this work, we develop and evaluate algorithms for generating ultrapacked microstructures of particles. Simulated microstructures reported in the literature rarely contain particle volume fractions greater than 60%. However, commercially available thermal greases appear to achieve volume fractions in the range of 60–80%. Therefore, to analyze the effectiveness of commercially available particle-filled thermal interface materials (TIM), there is a need to develop algorithms capable of generating ultrapacked microstructures. The particle packing problem is initially posed as a nonlinear programming problem, and formal optimization algorithms are applied to generate microstructures that are maximally packed. The packing efficiency in the simulated microstructure is dependent on the number of particles in the simulation cell; however, as the number of particles increases, the packing simulation is computationally expensive. Here, the computational time to generate microstructures with large number of particles is systematically evaluated first using optimization algorithms. The algorithms include the penalty function methods, best-in-class sequential quadratic programming method, matrix-less conjugate gradient method as well as the augmented Lagrangian method. Heuristic algorithms are next evaluated to achieve computationally efficient packing. The evaluated heuristic algorithms are mainly based on the drop-fall-shake (DFS) method, but modified to more effectively simulate the mixing process in commercial planetary mixers. With the developed procedures, representative volume elements (RVE) with volume fraction as high as 74% are demonstrated. The simulated microstructures are analyzed using our previously developed random network model to estimate the effective thermal and mechanical behavior given a particle arrangement.

References

1.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.10.1109/JPROC.2006.879796
2.
Marotta
,
E.
, and
Fletcher
,
L.
,
1996
, “
Thermal Contact Conductance of Selected Polymeric Materials
,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
334
342
.10.2514/3.792
3.
Mirmira
,
S.
,
Marotta
,
E.
, and
Fletcher
,
L.
,
1997
, “
Thermal Contact Conductance of Adhesives for Microelectronic Systems
,”
J. Thermophys. Heat Transfer
,
11
(
2
), pp.
141
145
.10.2514/2.6232
4.
Zhou
,
P.
, and
Goodson
,
K. E.
,
2001
, “
Modeling and Measurement of Pressure Dependent Junction-Spreader Thermal Resistance for Integrated Circuits
,”
ASME-Publications-Htd
,
369
, pp.
51
58
.https://www.researchgate.net/publication/263617805_Modeling_and_Measurement_of_Pressure_Dependent_Junction-Spreader_Thermal_Resistance_for_Integrated_Circuits
5.
Torquato
,
S.
,
2013
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
, Vol.
16
,
Springer Science & Business Media
,
Berlin
.
6.
Zweben
,
C.
,
1998
, “
Advances in Composite Materials for Thermal Management in Electronic Packaging
,”
JOM
,
50
(
6
), pp.
47
51
.10.1007/s11837-998-0128-6
7.
Yu
,
W.
,
Xie
,
H.
,
Yin
,
L.
,
Zhao
,
J.
,
Xia
,
L.
, and
Chen
,
L.
,
2015
, “
Exceptionally High Thermal Conductivity of Thermal Grease: Synergistic Effects of Graphene and Alumina
,”
Int. J. Therm. Sci.
,
91
, pp.
76
82
.10.1016/j.ijthermalsci.2015.01.006
8.
Torquato
,
S.
,
Truskett
,
T. M.
, and
Debenedetti
,
P. G.
,
2000
, “
Is Random Close Packing of Spheres Well Defined?
,”
Phys. Rev. Lett.
,
84
(
10
), pp.
2064
2067
.10.1103/PhysRevLett.84.2064
9.
Pournin
,
L.
,
Liebling
,
T. M.
, and
Mocellin
,
A.
,
2001
, “
Molecular-Dynamics Force Models for Better Control of Energy Dissipation in Numerical Simulations of Dense Granular Media
,”
Phys. Rev. E
,
65
(
1
), p.
011302
.10.1103/PhysRevE.65.011302
10.
Kanuparthi
,
S.
,
Subbarayan
,
G.
,
Siegmund
,
T.
, and
Sammakia
,
B.
,
2008
, “
An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials
,”
IEEE Trans. Compon. Packaging Technol.
,
31
(
3
), pp.
611
621
.10.1109/TCAPT.2008.2001839
11.
Dan
,
B.
,
Sammakia
,
B. G.
,
Subbarayan
,
G.
, and
Kanuparthi
,
S.
,
2013
, “
An Improved Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials
,”
ASME J. Electron. Packag.
,
135
(
3
), pp.
031003
031003
.10.1115/1.4024392
12.
Vaitheeswaran
,
P. K.
, and
Subbarayan
,
G.
,
2018
, “
Estimation of Effective Thermal and Mechanical Properties of Particulate Thermal Interface Materials by a Random Network Model
,”
ASME J. Electron. Packag.
,
140
(
2
), p.
020901
.10.1115/1.4039136
13.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
, Vol.
1
,
Clarendon Press
,
London, UK
.
14.
Rayleigh
,
L.
,
1892
, “
Lvi. on the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
211
), pp.
481
502
.10.1080/14786449208620364
15.
McKenzie
,
D. R.
,
McPhedran
,
R.
, and
Derrick
,
G.
,
1978
, “
The Conductivity of Lattices of Spheres-II. The Body Centred and Face Centred Cubic Lattices
,”
Proc. R. Soc. Lond. A
,
362
(
1709
), pp.
211
232
.10.1098/rspa.1978.0129
16.
Hasselman
,
D.
, and
Johnson
,
L. F.
,
1987
, “
Effective Thermal Conductivity of Composites With Interfacial Thermal Barrier Resistance
,”
J. Compos. Mater.
,
21
(
6
), pp.
508
515
.10.1177/002199838702100602
17.
Bruggeman
,
D.
,
1935
, “
Dielektrizitatskonstanten Und Leitfahigkeiten Der Mishkorper Aus Isotropen Substanzen
,”
Ann. Phys. (Leipzig)
,
416
(
7
), pp.
636
664
.10.1002/andp.19354160705
18.
Devpura
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2000
, “
Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology
,”
Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Vol.
1
,
IEEE
,
Las Vegas, NV
, May 23–26, pp.
21
28
.10.1109/ITHERM.2000.866803
19.
Kanuparthi
,
S.
,
Rayasam
,
M.
,
Subbarayan
,
G.
,
Sammakia
,
B.
,
Gowda
,
A.
, and
Tonapi
,
S.
,
2009
, “
Hierarchical Field Compositions for Simulations of Near-Percolation Thermal Transport in Particulate Materials
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
5–8
), pp.
657
668
.10.1016/j.cma.2008.10.001
20.
Batchelor
,
G. K.
, and
O'brien
,
R.
,
1977
, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. Lond. A
,
355
(
1682
), pp.
313
333
.10.1098/rspa.1977.0100
21.
Vanderplaats
,
G. N.
,
1988
, “
Multidiscipline Design Optimization
,”
ASME Appl. Mech. Rev.
,
41
(
6
), pp.
257
262
.10.1115/1.3151897
22.
Nash
,
S. G.
, and
Nocedal
,
J.
,
1991
, “
A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale Optimization
,”
SIAM J. Optim.
,
1
(
3
), pp.
358
372
.10.1137/0801023
23.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Nonlinear Equations
,
Springer
,
Berlin
.
24.
Fletcher
,
R.
, and
Reeves
,
C. M.
,
1964
, “
Function Minimization by Conjugate Gradients
,”
Comput. J.
,
7
(
2
), pp.
149
154
.10.1093/comjnl/7.2.149
25.
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
1992
, “
Global Convergence Properties of Conjugate Gradient Methods for Optimization
,”
SIAM J. Optim.
,
2
(
1
), pp.
21
42
.10.1137/0802003
26.
Andreani
,
R.
,
Birgin
,
E. G.
,
Martínez
,
J. M.
, and
Schuverdt
,
M. L.
,
2008
, “
On Augmented Lagrangian Methods With General Lower-Level Constraints
,”
SIAM J. Optim.
,
18
(
4
), pp.
1286
1309
.10.1137/060654797
27.
Andreani
,
R.
,
Birgin
,
E. G.
,
Martínez
,
J. M.
, and
Schuverdt
,
M. L.
,
2007
, “
Augmented Lagrangian Methods Under the Constant Positive Linear Dependence Constraint Qualification
,”
Math. Prog.
111
(
1–2
), pp.
5
32
.10.1007/s10107-006-0077-1
28.
Smith
,
L.
, and
Midha
,
P.
,
1997
, “
A Computer Model for Relating Powder Density to Composition, Employing Simulations of Dense Random Packings of Monosized and Bimodal Spherical Particles
,”
J. Mater. Process. Technol.
,
72
(
2
), pp.
277
282
.10.1016/S0924-0136(97)00181-7
29.
Zhang
,
X.
,
Rayasam
,
M.
, and
Subbarayan
,
G.
,
2007
, “
A Meshless, Compositional Approach to Shape Optimal Design
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
17–20
), pp.
2130
2146
.10.1016/j.cma.2006.11.008
30.
Poux
,
M.
,
Fayolle
,
P.
,
Bertrand
,
J.
,
Bridoux
,
D.
, and
Bousquet
,
J.
,
1991
, “
Powder Mixing: Some Practical Rules Applied to Agitated Systems
,”
Powder Technol.
,
68
(
3
), pp.
213
234
.10.1016/0032-5910(91)80047-M
You do not currently have access to this content.