Recently, microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging and integration. In this study, an experimental investigation of subcooled flow boiling in a high-aspect-ratio rectangular microchannel was conducted with de-ionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and the imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, onset of nucleate boiling (ONB), and flow patterns of subcooled flow boiling were investigated with the aid of instrumental measurements and a high-speed camera. The slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, with lower superheat required of boiling incipience for lower mass fluxes. Meanwhile, the initiative superheat and heat flux of onset of nucleate boiling were compared with the existing correlations in the literature with good agreement. As for the flow visualization images, slug flow and reverse backflow were observed, where transient local dryout as well as rewetting occurred. A facile image processing tool was developed to profile the transient development and progression of the liquid–vapor interface and partial dryout patches in microchannels, which proved that the physical quantities of bubble dynamics for the elongation period during subcooled boiling could be well detected and calculated.

References

1.
Khanikar
,
V.
,
Mudawar
,
I.
, and
Fisher
,
T.
,
2009
, “
Effects of Carbon Nanotube Coating on Flow Boiling in a Micro-Channel
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3805
3817
.
2.
Rahim
,
K.
, and
Mian
,
A.
,
2017
, “
A Review on Laser Processing in Electronic and MEMS Packaging
,”
ASME J. Electron. Packag.
,
139
(
3
), p.
030801
.
3.
Zhang
,
H.
, and
Hedge
,
A.
,
2017
, “
Overview of Human Thermal Responses to Warm Surfaces of Electronic Devices
,”
ASME J. Electron. Packag.
,
139
(
3
), p.
030802
.
4.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2015
, “
Effect of Sub-Cooling on Performance of a Multi-Jet Two Phase Cooler With Multi-Scale Porous Surfaces
,”
Int. J. Therm. Sci.
,
87
, pp.
110
120
.
5.
Chen
,
J. N.
,
Xu
,
R. N.
,
Zhang
,
Z.
,
Chen
,
X.
,
Ouyang
,
X. L.
,
Wang
,
G. Y.
, and
Jiang
,
P. X.
,
2018
, “
Phenomenon and Mechanism of Spray Cooling on Nanowire Arrayed and Hybrid Micro/Nanostructured Surfaces
,”
ASME J. Heat Transfer
,
140
(
11
), p.
112401
.
6.
Hoysall
,
D. C.
,
Keniar
,
K.
, and
Garimella
,
S.
,
2018
, “
Addressing Two-Phase Flow Maldistribution in Microchannel Heat and Mass Exchangers
,”
ASME J. Heat Transfer
,
140
(
11
), p.
112402
.
7.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Elect. Device Lett.
,
2
(
5
), pp.
126
129
.
8.
Peng
,
X.
, and
Wang
,
B. X.
,
1993
, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.
9.
Ribatski
,
G.
,
Cabezas-Gómez
,
L.
,
Navarro
,
H. A.
, and
Saíz-Jabardo
,
J. M.
,
2018
, “
The Advantages of Evaporation in Micro-Scale Channels to Cool Microeletronic Devices
,”
Therm. Eng.
,
6
(
2
), pp.
34
39
.
10.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks––I: Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
.
11.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
.
12.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Flow Patterns and Heat Transfer Mechanisms During Flow Boiling Over Open Microchannels in Tapered Manifold (OMM)
,”
Int. J. Heat Mass Transfer
,
89
, pp.
494
504
.
13.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Teo
,
C. J.
, and
Chou
,
S. K.
,
2013
, “
Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
234
252
.
14.
Mukherjee
,
A.
,
Kandlikar
,
S. G.
, and
Edel
,
Z. J.
,
2011
, “
Numerical Study of Bubble Growth and Wall Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3702
3718
.
15.
Lu
,
C. T.
, and
Pan
,
C.
,
2011
, “
Convective Boiling in a Parallel Microchannel Heat Sink With a Diverging Cross Section and Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
5
(
5
), pp.
810
815
.
16.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5204
5212
.
17.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
34
(
3
), p.
034001
.
18.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.
19.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2045
2059
.
20.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
(
2
), pp.
213
224
.
21.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2011
, “
Boiling Heat Transfer and Flow Regimes in Microchannels—A Comprehensive Understanding
,”
ASME J. Electron. Packag.
,
133
(
1
), p.
011001
.
22.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2008
, “
Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid
,”
Int. J. Heat Mass Transfer
,
51
(
15-16
), pp.
3724
3735
.
23.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
The Critical Role of Channel Cross-Sectional Area in Microchannel Flow Boiling Heat Transfer
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
904
913
.
24.
Bar-Cohen
,
A.
,
Sheehan
,
J. R.
, and
Rahim
,
E.
,
2012
, “
Two-Phase Thermal Transport in Microgap Channels—Theory, Experimental Results, and Predictive Relations
,”
Microgravity Sci. Technol.
,
24
(
1
), pp.
1
15
.
25.
Kottke
,
P. A.
,
Yun
,
T. M.
,
Green
,
C. E.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2016
, “
Two-Phase Convective Cooling for Ultrahigh Power Dissipation in Microprocessors
,”
ASME J. Heat Transfer
,
38
(
1
), p.
011501
.
26.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2013
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and an Evaluation of Microgap Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
335
347
.
27.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro-and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.
28.
Bhavnani
,
S.
,
Narayanan
,
V.
,
Qu
,
W.
,
Jensen
,
M.
,
Kandlikar
,
S.
,
Kim
,
J.
, and
Thome
,
J.
,
2014
, “
Boiling Augmentation With Micro/Nanostructured Surfaces: Current Status and Research Outlook
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
197
222
.
29.
Yin
,
L.
,
Jia
,
L.
,
Guan
,
P.
, and
Liu
,
F.
,
2012
, “
An Experimental Investigation on the Confined and Elongated Bubbles in Subcooled Flow Boiling in a Single Microchannel
,”
J. Therm. Sci.
,
21
(
6
), pp.
549
556
.
30.
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2016
, “
An Experimental Investigation of Saturated Flow Boiling Heat Transfer and Pressure Drop in Square Microchannels
,”
Int. J. Refrig.
,
65
, pp.
1
11
.
31.
Thiangtham
,
P.
,
Keepaiboon
,
C.
,
Kiatpachai
,
P.
,
Asirvatham
,
L. G.
,
Mahian
,
O.
,
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2016
, “
An Experimental Study on Two-Phase Flow Patterns and Heat Transfer Characteristics During Boiling of R134a Flowing Through a Multi-Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
98
, pp.
390
400
.
32.
Fayyadh
,
E. M.
,
Mahmoud
,
M. M.
,
Sefiane
,
K.
, and
Karayiannis
,
T. G.
,
2017
, “
Flow Boiling Heat Transfer of R134a in Multi Microchannels
,”
Int. J. Heat Mass Transfer
,
110
, pp.
422
436
.
33.
Yin
,
L.
,
Jia
,
L.
, and
Xu
,
M.
,
2015
, “
Experimental Investigation on Bubble Sliding During Subcooled Flow Boiling in Microchannel
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
435
441
.
34.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2004
, “
Bubble Dynamics in Microchannels—Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5575
5589
.
35.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Duursma
,
G.
, and
Walton
,
A. J.
,
2013
, “
Bubble Dynamics and Flow Boiling Instabilities in Microchannels
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
663
675
.
36.
Paz
,
C.
,
Conde
,
M.
,
Porteiro
,
J.
, and
Concheiro
,
M.
,
2015
, “
Effect of Heating Surface Morphology on the Size of Bubbles During the Subcooled Flow Boiling of Water at Low Pressure
,”
Int. J. Heat Mass Transfer
,
89
, pp.
770
782
.
37.
Paz
,
C.
,
Conde
,
M.
,
Porteiro
,
J.
, and
Concheiro
,
M.
,
2017
, “
Effect of Heating Surface Morphology on Active Site Density in Subcooled Flow Nucleated Boiling
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
147
159
.
38.
Li
,
W.
,
Li
,
J.
,
Feng
,
Z.
,
Zhou
,
K.
, and
Wu
,
Z.
,
2017
, “
Local Heat Transfer in Subcooled Flow Boiling in a Vertical Mini-Gap Channel
,”
Int. J. Heat Mass Transfer
,
110
, pp.
796
804
.
39.
Zhou
,
K.
,
Coyle
,
C.
,
Li
,
J.
,
Buongiorno
,
J.
, and
Li
,
W.
,
2017
, “
Flow Boiling in Vertical Narrow Microchannels of Different Surface Wettability Characteristics
,”
Int. J. Heat Mass Transfer
,
109
, pp.
103
114
.
40.
Li
,
W.
,
Zhou
,
K.
,
Li
,
J.
,
Feng
,
Z.
, and
Zhu
,
H.
,
2018
, “
Effects of Heat Flux, Mass Flux and Two-Phase Inlet Quality on Flow Boiling in a Vertical Superhydrophilic Microchannel
,”
Int. J. Heat Mass Transfer
,
119
, pp.
601
613
.
41.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
.
42.
Deng
,
D.
,
Chen
,
R.
,
Tang
,
Y.
,
Lu
,
L.
,
Zeng
,
T.
, and
Wan
,
W.
,
2015
, “
A Comparative Study of Flow Boiling Performance in Reentrant Copper Microchannels and Reentrant Porous Microchannels With Multi-Scale Rough Surface
,”
Int. J. Multiphase Flow
,
72
, pp.
275
287
.
43.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Science
,
1
(
1
), pp.
3
17
.
44.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Cheng
,
Y.
, and
Wang
,
J.
,
2017
, “
Experimental Investigation of Flow Boiling Performance in Microchannels With and Without Triangular Cavities–A Comparative Study
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1511
1526
.
45.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.
46.
Liu
,
D.
,
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2005
, “
Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5134
5149
.
47.
Okawa
,
T.
,
2012
, “
Onset of Nucleate Boiling in Mini and Microchannels: A Brief Review
,”
Front. Heat Mass Transfer (FHMT)
,
3
(
1
), pp. 1–8.https://www.researchgate.net/publication/271309974_Onset_of_nucleate_boiling_in_mini_and_microchannels_A_brief_review
48.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
49.
Krishnan
,
R. A.
,
Balasubramanian
,
K. R.
, and
Suresh
,
S.
,
2017
, “
The Effect of Heating Area Orientation on Flow Boiling Performance in Microchannels Heat Sink Under Subcooled Condition
,”
Int. J. Heat Mass Transfer
,
110
, pp.
276
293
.
50.
Ferrari
,
A.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2018
, “
Numerical Analysis of Slug Flow Boiling in Square Microchannels
,”
Int. J. Heat Mass Transfer
,
123
, pp.
928
944
.
You do not currently have access to this content.