Enhanced boiling is one of the popular cooling schemes in thermal management due to its superior heat transfer characteristics. This study demonstrates the ability of copper inverse opal (CIO) porous structures to enhance pool boiling performance using a thin CIO film with a thickness of ∼10 μm and pore diameter of 5 μm. The microfabricated CIO film increases microscale surface roughness that in turn leads to more active nucleation sites thus improved boiling performance parameters such as heat transfer coefficient (HTC) and critical heat flux (CHF) compared to those of smooth Si surfaces. The experimental results for CIO film show a maximum CHF of 225 W/cm2 (at 16.2 °C superheat) or about three times higher than that of smooth Si surface (80 W/cm2 at 21.6 °C superheat). Optical images showing bubble formation on the microporous copper surface are captured to provide detailed information of bubble departure diameter and frequency.

References

1.
Bar-Cohen
,
A.
,
2013
, “
Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020907
.
2.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2013
, “
Cooling Limits for GaN HEMT Technology
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), Monterey, CA, Oct. 13–16, pp.
1
5
.
3.
Bar-Cohen
,
A.
, and
Geisler
,
K. J. L.
,
2011
, “
Cooling the Electronic Brain: Stacking Processing Chips Can Make for More Compact Computers. But it Will Take Advances in Microfluidics to Make Such Dense Number Crunching Practical
,”
Mech. Eng.; New York
,
133
(
4
), pp.
38
41
.http://go.galegroup.com/ps/anonymous?p=AONE&sw=w&issn=00256501&v=2.1&it=r&id=GALE%7CA254012988&sid=googleScholar&linkaccess=fulltext&authCount=1&isAnonymousEntry=true
4.
Andresen
,
M.
,
Liserre
,
M.
, and
Buticchi
,
G.
,
2014
, “
Review of Active Thermal and Lifetime Control Techniques for Power Electronic Modules
,”
16th European Conference on Power Electronics and Applications
(
EPE-ECCE
), Lappeenranta, Finland, Aug. 26–28, pp.
1
10
.
5.
Dhillon
,
N. S.
,
Buongiorno
,
J.
, and
Varanasi
,
K. K.
,
2015
, “
Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces
,”
Nat. Commun.
,
6
(
1
), p.
8247
.
6.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
7.
Dullien
,
F. A. L.
,
2012
,
Porous Media: Fluid Transport and Pore Structure
,
Academic Press
, Cambridge, MA.
8.
Ohadi
,
M.
,
Choo
,
K.
,
Dessiatoun
,
S.
, and
Cetegen
,
E.
,
2013
,
Next Generation Microchannel Heat Exchangers
,
Springer
, New York.
9.
Liu
,
T.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Scholl
,
S.
,
Lee
,
H.
,
Won
,
Y.
,
Asheghi
,
M.
,
Goodson
,
K.
,
Kazemi
,
H.
, and
Vanhille
,
K.
,
2015
, “
Full Scale Simulation of an Integrated Monolithic Heat Sink for Thermal Management of a High Power Density GaN-SiC Chip
,”
ASME
Paper No. IPACK2015-48592.
10.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2013
, “
Design Optimization of Manifold Microchannel Heat Sink Through Evolutionary Algorithm Coupled With Surrogate Model
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
3
(
4
), pp.
617
624
.
11.
McCarthy
,
M.
,
2015
, “
Recent Advancements in Micro/Nanoscale Surface Modifications and Their Effects on Pool Boiling Critical Heat Flux and Heat Transfer Coefficient
,”
Encyclopedia of Two-Phase Heat Transfer and Flow II
,
World Scientific
, Singapore, pp.
275
309
.
12.
Kaviany
,
M.
,
2012
,
Principles of Heat Transfer in Porous Media
,
Springer Science & Business Media
, Berlin.
13.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.
14.
Mori
,
S.
,
Mt Aznam
,
S.
, and
Okuyama
,
K.
,
2015
, “
Enhancement of the Critical Heat Flux in Saturated Pool Boiling of Water by Nanoparticle-Coating and a Honeycomb Porous Plate
,”
Int. J. Heat Mass Transfer
,
80
, pp.
1
6
.
15.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.
16.
Palko
,
J. W.
,
Lee
,
H.
,
Zhang
,
C.
,
Dusseault
,
T. J.
,
Maitra
,
T.
,
Won
,
Y.
,
Agonafer
,
D. D.
,
Moss
,
J.
,
Houshmand
,
F.
,
Rong
,
G.
,
Wilbur
,
J. D.
,
Rockosi
,
D.
,
Mykyta
,
I.
,
Resler
,
D.
,
Altman
,
D.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2017
, “
Extreme Two-Phase Cooling From Laser-Etched Diamond and Conformal, Template-Fabricated Microporous Copper
,”
Adv. Funct. Mater.
,
27
(
45
), p.
1703265
.
17.
Palko
,
J. W.
,
Zhang
,
C.
,
Wilbur
,
J. D.
,
Dusseault
,
T. J.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Santiago
,
J. G.
,
2015
, “
Approaching the Limits of Two-Phase Boiling Heat Transfer: High Heat Flux and Low Superheat
,”
Appl. Phys. Lett.
,
107
(
25
), p.
253903
.
18.
Barako
,
M. T.
,
Sood
,
A.
,
Zhang
,
C.
,
Wang
,
J.
,
Kodama
,
T.
,
Asheghi
,
M.
,
Zheng
,
X.
,
Braun
,
P. V.
, and
Goodson
,
K. E.
,
2016
, “
Quasi-Ballistic Electronic Thermal Conduction in Metal Inverse Opals
,”
Nano Lett.
,
16
(
4
), pp.
2754
2761
.
19.
Bigioni
,
T. P.
,
Lin
,
X.-M.
,
Nguyen
,
T. T.
,
Corwin
,
E. I.
,
Witten
,
T. A.
, and
Jaeger
,
H. M.
,
2006
, “
Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers
,”
Nat. Mater.
,
5
(
4
), pp.
265
270
.
20.
Barako
,
M. T.
,
Roy-Panzer
,
S.
,
English
,
T. S.
,
Kodama
,
T.
,
Asheghi
,
M.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2015
, “
Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites
,”
ACS Appl. Mater. Interfaces
,
7
(
34
), pp.
19251
19259
.
21.
Anderson
,
T. M.
, and
Mudawar
,
I.
,
1989
, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
752
759
.
22.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4023
4038
.
23.
Kocamustafaogullari
,
G.
, and
Ishii
,
M.
,
1983
, “
Interfacial Area and Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
,
26
(
9
), pp.
1377
1387
.
You do not currently have access to this content.