Engineered porous structures are being used in many applications including aerospace, electronics, biomedical, and others. The objective of this paper is to study the effect of three-dimensional (3D)-printed porous microstructure on the dielectric characteristics for radio frequency (RF) antenna applications. In this study, a sandwich construction made of a porous acrylonitrile butadiene styrene (ABS) thermoplastic core between two solid face sheets has been investigated. The porosity of the core structure has been varied by changing the fill densities or percent solid volume fractions in the 3D printer. Three separate sets of samples with dimensions of 50 mm × 50 mm × 5 mm are created at three different machine preset fill densities each using LulzBot and Stratasys dimension 3D printers. The printed samples are examined using a 3D X-ray microscope to understand pore distribution within the core region and uniformity of solid volumes. The nondestructively acquired 3D microscopy images are then postprocessed to measure actual solid volume fractions within the samples. This measurement is important specifically for dimension-printed samples as the printer cannot be set for any specific fill density. The experimentally measured solid volume fractions are found to be different from the factory preset values for samples prepared using LulzBot printer. It is also observed that the resonant frequency for samples created using both the printers decreases with an increase in solid volume fraction, which is intuitively correct. The results clearly demonstrate the ability to control the dielectric properties of 3D-printed structures based on prescribed fill density.

References

1.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing—3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer
, New York.
2.
Stratasys, 2017, “3D Printers,” Stratasys Ltd., Edina, MN, accessed Apr. 6, 2017, http://www.stratasys.com/3d-printers
3.
Panda
,
S. K.
,
2009
, “
Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique
,”
Intell. Inf. Manage.
,
1
(
2
), pp.
89
97
.
4.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
5.
Havriliak
,
S.
, and
Havriliak
,
S. J.
,
1997
,
Dielectric and Mechanical Relaxation in Materials: Analysis, Interpretation, and Application to Polymers
,
Hanser Gardner Publications
,
Munich, Germany
.
6.
Garcia
,
C. R.
,
Correa
,
J.
,
Espalin
,
D.
,
Barton
,
J. H.
,
Rumpf
,
R. C.
,
Wicker
,
R.
, and
Gonzalez
,
V.
,
2012
, “
3D Printing of Anisotropic Metamaterials
,”
Prog. Electromagn. Res. Lett.
,
34
, pp.
75
82
.
7.
Isakov
,
D. V.
,
Lei
,
Q.
,
Castles
,
F.
,
Stevens
,
C. J.
,
Grovenor
,
C. R. M.
, and
Grant
,
P. S.
,
2016
, “
3D Printed Anisotropic Dielectric Composite With Meta-Material Features
,”
Mater. Des.
,
93
, pp.
423
430
.
8.
Optomec, 2017, “Optomec—Production Grade 3D Printers With a Material Difference,” Optomec, Albuquerque, NM, accessed Apr. 6, 2017, http://www.optomec.com/
9.
Wright
,
M.
,
Baron
,
W.
,
Miller
,
J.
,
Tuss
,
J.
,
Zeppettella
,
D.
, and
Ali
,
M.
, 2015, “
Conformal Direct Written Antenna on Structural Composites
,”
IEEE
International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
, Vancouver, BC, Canada, July 19–24, pp.
613
614
.
10.
MESOSCRIBE,
2015
, “Mesoscribe Technologies,” Mesoscribe Technologies, Inc., East Setauket, NY, accessed Apr. 6, 2017, http://www.mesoscribe.com/
11.
Smulders
,
P.
,
2013
, “
The Road to 100 Gb/s Wireless and Beyond: Basic Issues and Key Directions
,”
IEEE Commun. Mag.
,
51
(
12
), pp.
86
91
.
12.
Boccardi
,
F. F.
,
Heath
,
R. W.
,
Lozano
,
A.
, and
Popovski
,
P.
,
2014
, “
Five Disruptive Technology Directions for 5G
,”
IEEE Commun. Mag.
,
52
(
2
), pp.
74
80
.
13.
Rappaport
,
T. S.
, and
Murdock
,
J. N.
,
2012
, “
Power Efficiency and Consumption Factor Analysis for Broadband Millimeter-Wave Cellular Networks
,”
IEEE Global Communications Conference
(
GLOBECOM
), Anaheim, CA, Dec. 3–7, pp. 4518–4523.
14.
Wright
,
M.
,
Baron
,
W.
,
Miller
,
J.
,
Tuss
,
J.
,
Zeppettella
,
D.
, and
Ali
,
M.
,
2015
, “
Superstrate Configurations for a MEMS Reconfigurable Pixelated Patch Antenna for CLAS
,”
IEEE
International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
, Vancouver, BC, Canada, July 19–24, pp. 2387–2388.
15.
You
,
C.
,
Tentzeris
,
M. M.
, and
Hwang
,
W.
,
2007
, “
Multilayer Effects on Microstrip Antennas for Their Integration With Mechanical Structure
,”
IEEE Trans. Antennas Propag.
,
55
(
4
), pp.
1051
1058
.
16.
Bishop
,
N. A.
,
Miller
,
J.
,
Zeppettella
,
D.
,
Baron
,
W.
,
Tuss
,
J.
, and
Ali
,
M.
,
2015
, “
A Broadband High-Gain Bi-Layer LPDA for UHF Conformal Load-Bearing Antenna Structures (CLASs) Applications
,”
IEEE Trans. Antennas Propag.
,
63
(
5
), pp.
2359
2364
.
17.
Chamok
,
N. H.
,
Ali
,
M.
,
Anthony
,
T.
, and
Weiss
,
S. J.
,
2015
, “
Ultra-Thin UHF Broadband Antenna on a Non-Uniform Aperiodic (NUA) MetaSurface
,”
IEEE Antennas Propag. Mag.
,
57
(
2
), pp.
167
180
.
18.
LULZBOT, 2016, “
LulzBot Taz 5
,” Aleph Objects, Inc., Loveland, CO, accessed Apr. 6, 2017, https://www.lulzbot.com/store/printers/lulzbot-taz-5
19.
Stratasys, 2013, “
Dimension Model 1200es
,” Stratasys Ltd., Edina, MN, accessed Apr. 6, 2017, http://www.stratasys.com/3d-printers/design-series/dimension-1200es
20.
Bahr
,
R.
,
Le
,
T.
,
Tentzeris
,
M. M.
,
Moscato
,
S.
,
Pasian
,
M.
,
Bozzi
,
M.
, and
Perregrini
,
L.
,
2015
, “
RF Characterization of 3D Printed Flexible Materials—NinjaFlex Filaments
,”
European Microwave Conference
(
EuMC
), Paris, France, Sept. 6–11, pp. 742–745.
21.
da Silva
,
J. C.
,
Mader
,
K.
,
Holler
,
M.
,
Haberthur
,
D.
,
Manuel
,
A. D.
,
Guizar-Sicairos
,
M.
,
Cheng
,
W.-C.
,
Shu
,
Y.
,
Raabe
,
J.
,
Menzel
,
A.
, and
van Bokhoven
,
J. A.
,
2015
, “
Assessment of the 3D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging
,”
ChemCatChem Commun.
,
7
(
3
), pp.
413
416
.
22.
Akbari
,
A.
, and
Ghoshal
,
S.
,
2015
, “
Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds
,”
Environ. Sci. Technol.
,
49
(
24
), pp.
14368
14375
.
23.
Srisuji
,
T.
, and
Nandagopal
,
C.
,
2015
, “
Analysis on Microstrip Patch Antennas for Wireless Communication
,”
IEEE Sponsored Second International Conference on Electronics and Communication System
(
ICECS
), Piscataway, NJ, Feb. 26–27, pp. 538–541.
24.
Njoku
,
C. C.
,
Whittow
,
W. G.
, and
Vardaxoglou
,
J. C.
,
2015
, “
Microstrip Patch Antennas With Anisotropic and Diamagnetic Synthetic Heterogeneous Substrates
,”
IEEE Trans. Antennas Propag.
,
63
(
7
), pp.
3280
3285
.
25.
Balanis
,
C. A.
,
2005
,
Antenna Theory Analysis and Design
, 3rd ed.,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.