Currently, intermetallics (IMCs) in the solder joint are getting much attention due to their higher volume fraction in the smaller thickness interconnects. They possess different mechanical properties compared to bulk solder. Large volume fraction of IMCs may affect the mechanical behavior, thermomechanical and mechanical fatigue life and reliability of the solder interconnects due to very brittle nature compared to solder material. The question that this study is seeking to answer is how degrading IMCs are to the thermomechanical reliability of the microbumps used in three-dimensional (3D) integrated circuits (ICs) where the microsolder bumps have only a few microns of bond thicknesses. Several factors such as “squeezed out” solder geometry and IMC thickness are studied through a numerical experiment. Fatigue life is calculated using Coffin–Manson model. Results show that, though undesirable because of high likelihood of creating short circuits, squeezed out solder accumulates less inelastic strains under thermomechanical cyclic load and has higher fatigue life. The results show that with the increase of IMCs thickness in each model, the inelastic strains accumulation per cycle increases, thus decreasing the fatigue life. The drop in fatigue life tends to follow an exponential decay path. On the other hand, it was observed that plastic strain range per cycle tends to develop rapidly in Cu region with the increase in IMC thickness which calls for a consideration of Cu fatigue life more closely when the microbump contains a higher volume fraction of the IMCs. Overall, by analyzing the results, it is obvious that the presence of IMCs must be considered for microsolder bump with smaller bond thickness in fatigue life prediction model to generate more reasonable and correct results.

References

1.
Kuo
,
C.
, and
Chen
,
J.-J.
,
2010
, “
Development of a Novel Stack Package to Fabricate High Density Memory Modules for High-End Application
,”
Microelectron. Reliab.
,
50
(
8
), pp.
1116
1120
.
2.
Zhan
,
C.-J.
,
Chuang
,
C.-C.
,
Juang
,
J.-Y.
,
Lu
,
S.-T.
, and
Chang
,
T.-C.
,
2010
, “
Assembly and Reliability Characterization of 3D Chip Stacking With 30 μm Pitch Lead-Free Solder Micro Bump Interconnection
,”
60th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, June 1–4, , pp.
1043
1049
.
3.
Liu
,
D.
, and
Park
,
S.
,
2014
, “
Three-Dimensional and 2.5 Dimensional Interconnection Technology: State of the Art
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
014001
.
4.
Peng
,
C.-T.
,
Liu
,
C.-M.
,
Lin
,
J.-C.
,
Cheng
,
H.-C.
, and
Chiang
,
K.-N.
,
2004
, “
Reliability Analysis and Design for the Fine-Pitch Flip Chip BGA Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
4
), pp.
684
693
.
5.
Tu
,
K. N.
,
2011
, “
Reliability Challenges in 3D IC Packaging Technology
,”
Microelectron. Reliab.
,
51
(
3
), pp.
517
523
.
6.
Suhir
,
E.
,
2013
, “
Could Electronics Reliability be Predicted, Quantified and Assured?
,”
Microelectron. Reliab.
,
53
(
7
), pp.
925
936
.
7.
Lau
,
J. H.
,
2014
, “
Overview and Outlook of Three-Dimensional Integrated Circuit Packaging, Three-Dimensional Si Integration, and Three-Dimensional Integrated Circuit Integration
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
040801
.
8.
Nakahira
,
K.
,
2012
, “
Minimization of the Local Residual Stress in 3D Flip Chip Structures by Optimizing the Mechanical Properties of Electroplated Materials and the Alignment Structure of TSVs and Fine Bumps
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
021006
.
9.
Lee
,
C. C.
,
Wang
,
P. J.
, and
Kim
,
J. S.
,
2007
, “
Are Intermetallics in Solder Joints Really Brittle?
,”
57th Electronic Components and Technology Conference
(
ECTC '07
), Reno, NV, May 29–June 1, pp.
648
652
.
10.
Abdelhadi
,
O. M.
, and
Ladani
,
L.
,
2013
, “
Effect of Joint Size on Microstructure and Growth Kinetics of Intermetallic Compounds in Solid-Liquid Interdiffusion Sn3.5Ag/Cu-Substrate Solder Joints
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021004
.
11.
Panchenko
,
I.
,
Grafe
,
J.
,
Mueller
,
M.
, and
Wolter
,
K.-J.
,
2013
, “
Microstructure Investigation of Cu/SnAg Solid-Liquid Interdiffusion Interconnects by Electron Backscatter Diffraction
,”
IEEE 15th Electronics Packaging Technology Conference
(
EPTC 2013
), Singapore, Dec. 11–13, pp.
318
323
.
12.
Ladani
,
L.
, and
Abdelhadi
,
O.
,
2014
, “
Structural Size Effect on Mechanical Behavior of Intermetallic Material in Solder Joints: Experimental Investigation
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
014501
.
13.
Choudhury
,
S. F.
, and
Ladani
,
L.
,
2014
, “
Grain Growth Orientation and Anisotropy in Cu6Sn5 Intermetallic: Nanoindentation and Electron Backscatter Diffraction Analysis
,”
J. Electron. Mater.
,
43
(
4
), pp.
996
1004
.
14.
Ladani
,
L. J.
,
2010
, “
Stress Analysis of 3-Dimensional IC Package as Function of Structural Design Parameters
,”
Microelectron. Eng.
,
87
(
10
), pp.
1852
1860
.
15.
Johnson
,
R. W.
, and
Shen
,
Y.-L.
,
2015
, “
Analysis of Thermal Stress and Its Influence on Carrier Mobility in Three-Dimensional Microelectronic Chip Stack
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021011
.
16.
Lu
,
S.-T.
,
Juang
,
J.-Y.
,
Cheng
,
H.-C.
,
Tsai
,
Y.-M.
,
Chen
,
T.-H.
, and
Chen
,
W.-H.
,
2012
, “
Effects of Bonding Parameters on the Reliability of Fine-Pitch Cu/Ni/SnAg Micro-Bump Chip-to-Chip Interconnection for Three-Dimensional Chip Stacking
,”
IEEE Trans. Device Mater. Reliab.
,
12
(
2
), pp.
296
305
.
17.
Abdelhadi
,
O. M.
, and
Ladani
,
L.
,
2012
, “
IMC Growth of Sn-3.5Ag/Cu System: Combined Chemical Reaction and Diffusion Mechanisms
,”
J. Alloys Compd.
,
537
, pp.
87
99
.
18.
Lee
,
T. Y.
,
Choi
,
W. J.
,
Tu
,
K. N.
,
Jang
,
J. W.
,
Kuo
,
S. M.
,
Lin
,
J. K.
,
Frear
,
D. R.
,
Zeng
,
K.
, and
Kivilahti
,
J. K.
,
2002
, “
Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu
,”
J. Mater. Res.
,
17
(02), pp.
291
301
.
19.
Zhang
,
L.
,
Xue
,
S. B.
,
Zeng
,
G.
,
Gao
,
L. L.
, and
Ye
,
H.
,
2012
, “
Interface Reaction Between SnAgCu/SnAgCuCe Solders and Cu Substrate Subjected to Thermal Cycling and Isothermal Aging
,”
J. Alloys Compd.
,
510
(
1
), pp.
38
45
.
20.
Lall
,
P.
,
Vaidya
,
R.
,
More
,
V.
, and
Goebel
,
K.
,
2012
, “
Assessment of Accrued Damage and Remaining Useful Life in Leadfree Electronics Subjected to Multiple Thermal Environments of Thermal Aging and Thermal Cycling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
4
), pp.
634
649
.
21.
Zhang
,
X.
,
Wong
,
E. H.
,
Lee
,
C.
,
Chai
,
T.-C.
,
Ma
,
Y.
,
Teo
,
P.-S.
,
Pinjala
,
D.
, and
Sampath
,
S.
,
2004
, “
Thermo-Mechanical Finite Element Analysis in a Multichip Build Up Substrate Based Package Design
,”
Microelectron. Reliab.
,
44
(
4
), pp.
611
619
.
22.
Li
,
X.
, and
Wang
,
Z.
,
2007
, “
Thermo-Fatigue Life Evaluation of SnAgCu Solder Joints in Flip Chip Assemblies
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
6
12
.
23.
Lall
,
P.
,
Hande
,
M.
,
Bhat
,
C.
,
Islam
,
N.
,
Suhling
,
J.
, and
Lee
,
J.
,
2007
, “
Feature Extraction and Damage-Precursors for Prognostication of Lead-Free Electronics
,”
Microelectron. Reliab.
,
47
(
12
), pp.
1907
1920
.
24.
Tian
,
Y.
,
Liu
,
X.
,
Chow
,
J.
,
Wu
,
Y. P.
, and
Sitaraman
,
S. K.
,
2014
, “
Experimental Evaluation of SnAgCu Solder Joint Reliability in 100-μm Pitch Flip-Chip Assemblies
,”
Microelectron. Reliab.
,
54
(
5
), pp.
939
944
.
25.
Hung
,
T.-Y.
,
Huang
,
C.-J.
,
Lee
,
C.-C.
,
Wang
,
C.-C.
,
Lu
,
K.-C.
, and
Chiang
,
K.-N.
,
2013
, “
Investigation of Solder Crack Behavior and Fatigue Life of the Power Module on Different Thermal Cycling Period
,”
Microelectron. Eng.
,
107
, pp.
125
129
.
26.
Yu
,
D.
,
Lee
,
H.
, and
Park
,
S.
,
2012
, “
Reliability Assessment of Preloaded Solder Joint Under Thermal Cycling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041008
.
27.
Lee
,
C.-C.
, and
Lin
,
P. T.
,
2014
, “
Reliability-Based Design Guidance of Three-Dimensional Integrated Circuits Packaging Using Thermal Compression Bonding and Dummy Cu/Ni/SnAg Microbumps
,”
ASME J. Electron. Packag.
,
136
(
3
), p.
031006
.
28.
Che
,
F. X.
, and
Pang
,
J. H. L.
,
2012
, “
Characterization of IMC Layer and Its Effect on Thermomechanical Fatigue Life of Sn–3.8Ag–0.7Cu Solder Joints
,”
J. Alloys Compd.
,
541
, pp.
6
13
.
29.
Chen
,
W.-H.
,
Yu
,
C.-F.
,
Cheng
,
H.-C.
,
Tsai
,
Y.
, and
Lu
,
S.-T.
,
2013
, “
IMC Growth Reaction and Its Effects on Solder Joint Thermal Cycling Reliability of 3D Chip Stacking Packaging
,”
Microelectron. Reliab.
,
53
(
1
), pp.
30
40
.
30.
Cheng
,
H.-C.
,
Hsieh
,
K.-Y.
, and
Chen
,
K.-M.
,
2011
, “
Thermal–Mechanical Optimization of a Novel Nanocomposite-Film Typed Flip Chip Technology
,”
Microelectron. Reliab.
,
51
(
4
), pp.
826
836
.
31.
Chiou
,
Y.-C.
,
Jen
,
Y.-M.
, and
Huang
,
S.-H.
,
2011
, “
Finite Element Based Fatigue Life Estimation of the Solder Joints With Effect of Intermetallic Compound Growth
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2319
2329
.
32.
Lee
,
C.-C.
,
Yang
,
T.-F.
,
Wu
,
C.-S.
,
Kao
,
K.-S.
,
Cheng
,
R.-C.
, and
Chen
,
T.-H.
,
2013
, “
Reliability Estimation and Failure Mode Prediction for 3D Chip Stacking Package With the Application of Wafer-Level Underfill
,”
Microelectron. Eng.
,
107
, pp.
107
113
.
33.
Ladani
,
L. J.
, and
Razmi
,
J.
,
2009
, “
Interaction Effect of Voids and Standoff Height on Thermomechanical Durability of BGA Solder Joints
,”
IEEE Trans. Device Mater. Reliab.
,
9
(
3
), pp.
348
355
.
34.
Ladani
,
L. J.
,
2010
, “
Numerical Analysis of Thermo-Mechanical Reliability of Through Silicon Vias (TSVs) and Solder Interconnects in 3-Dimensional Integrated Circuits
,”
Microelectron. Eng.
,
87
(
2
), pp.
208
215
.
35.
Yi
,
S.
,
Daharwal
,
P. D.
,
Lee
,
Y. J.
,
Harkness
,
B. R.
,
Corporation
,
I.
, and
Corning
,
D.
,
2006
, “
Study of Low-Modulus Die Attach Adhesives and Molding Compounds on Warpage and Damage of PBGA
,”
56th Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 30–June 2, pp.
939
945
.
36.
Yang
,
P.-F.
,
Lai
,
Y.-S.
,
Jian
,
S.-R.
,
Chen
,
J.
, and
Chen
,
R.-S.
,
2008
, “
Nanoindentation Identifications of Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Derived by Diffusion Couples
,”
Mater. Sci. Eng., A
,
485
(
1–2
), pp.
305
310
.
37.
Chhanda
,
N. J.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2012
, “
Implementation of a Viscoelastic Model for the Temperature Dependent Material Behavior of Underfill Encapsulants
,”
13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
269
281
.
38.
Vandevelde
,
B.
,
Okoro
,
C.
,
Gonzalez
,
M.
,
Swinnen
,
B.
, and
Beyne
,
E.
,
2008
, “
Thermo-Mechanics of 3D-Wafer Level and 3D Stacked IC Packaging Technologies
,”
Ninth International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems
(
EuroSimE 2008
), Freiburg im Breisgau, Germany, Apr. 20–23.
39.
Ma
,
H.
,
2009
, “
Constitutive Models of Creep for Lead-Free Solders
,”
J. Mater. Sci.
,
44
(
14
), pp.
3841
3851
.
40.
Ladani
,
L. J.
, and
Dasgupta
,
A.
,
2005
, “
Effect of Voids on Thermo-Mechanical Durability of Pb-Free BGA Solder Joints: Modeling and Simulation
,”
ASME
Paper No. IMECE2005-80238.
41.
Ladani
,
L. J.
, and
Dasgupta
,
A.
,
2008
, “
Damage Initiation and Propagation in Voided Joints: Modeling and Experiment
,”
ASME J. Electron. Packag.
,
130
(
1
), p.
011008
.
42.
Bhatti
,
P. K.
,
2006
, “
Effect of Finite Element Modeling Techniques on Solder Joint Fatigue Life Prediction of Flip-Chip BGA Packages
,”
56th Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 30–June 2, pp.
972
980
.
43.
Pang
,
J. H. L.
,
Yeo
,
A.
,
Low
,
T. H.
, and
Che
,
F. X.
,
2004
, “
Lead-Free 96.5Sn-3.5Ag Flip Chip Solder Joint Reliability Analysis
,”
Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM '04
), Las Vegas, NV, June 1–4, pp.
160
164
.
44.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp. Math.
,
1
(
2
), pp.
141
165
.
45.
Kaban
,
I.
,
Mhiaoui
,
S.
,
Hoyer
,
W.
, and
Gasser
,
J.-G.
,
2005
, “
Surface Tension and Density of Binary Lead and Lead-Free Sn-Based Solders
,”
J. Phys. Condens. Matter
,
17
(
50
), pp.
7867
7873
.
46.
Ladani
,
L. J.
, and
Dasgupta
,
A.
,
2006
, “
The Successive-Initiation Modeling Strategy for Modeling Damage Progression: Application to Voided Solder Interconnects
,”
7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems
(
EuroSimE 2006
), Como, Italy, Apr. 24–26.
47.
Ladani
,
L. J.
,
2010
, “
Successive Softening and Cyclic Damage in Viscoplastic Material
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041011
.
48.
Lee
,
C.-C.
,
Kao
,
K.-S.
,
Cheng
,
R.-S.
,
Zhan
,
C.-J.
, and
Chang
,
T.-C.
,
2014
, “
Reliability Enhancements of Chip-on-Chip Package With Layout Designs of Microbumps
,”
Microelectron. Eng.
,
120
, pp.
138
145
.
49.
Ridout
,
S.
, and
Bailey
,
C.
,
2007
, “
Review of Methods to Predict Solder Joint Reliability Under Thermo-Mechanical Cycling
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
5
), pp.
400
412
.
50.
Tummala
,
R. R.
,
Raj
,
P. M.
,
Aggarwal
,
A.
,
Mehrotra
,
G.
,
Bansal
,
S.
,
Ong
,
C. K.
,
Chew
,
J.
, and
Vaidyanathan
,
K.
,
2006
, “
Copper Interconnections for High Performance and Fine Pitch Flip Chip Digital Applications and Ultra-Miniaturized RF Module Applications
,”
56th Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 30–June 2, pp.
102
111
.
51.
Prabhu
,
A.
,
1994
, “
A Thermo-Mechanical Fatigue Analysis of High Density Interconnect Vias
,” MS thesis, University of Maryland, College Park, MD.
52.
Lau
,
J. H.
, and
Pan
,
S. H.
,
2001
, “
Creep Behaviors of Flip Chip on Board With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints
,”
Int. J. Microcircuits Electron. Packag.
,
24
(
1
), pp.
11
18
.
You do not currently have access to this content.