The electronics industry is heading toward the three-dimensional (3D) microprocessor to cope with higher computing workloads. The 3D stacking of the processor and the memory components reduces the communication delay in multicore system-on-a-chip (SoCs), owing to reduced system size and shorter interconnects. The shorter interconnects in a multicore system lowers the memory access latencies and contributes to improvements in memory access bandwidth. The shorter interconnects in stacked architectures also enables small drivers for interconnections which further reduce interconnection-level-energy dissipations. On the down side, the 3D-stacked architectures have high thermal resistance, which in conjunction with poor thermal management techniques, poses a thermal threat to the reliability of the device. This paper establishes the significance of the microprocessor floor planning and single-phase microchannel cooling for solving the thermal issues arising in the 3D-stacked-quad-core processor. The 3D-stacked-quad-core processor considered in this study comprises of symmetric nonuniformly powered quad-core processor, liquid-cooled microchannel heat sink, dynamic random access memory (DRAM), thermal interface material (TIM), and heat spreader. The electrical through-silicon-vias (TSVs) between the processor and DRAM serve as interconnects, while the thermal TSVs reduce the internal thermal resistance. The effective cooling of the 3D-stacked-quad-core processor depends on the TSVs, quad-core layout and the optimized design of the microchannel heat sink for the desired coolant. The microchannel cooling of the 3D-stacked processor is done both by planar flow and impingement flow. The thermal efficiency of the cooling techniques is evaluated on the basis of hot spot temperature, hot spot spread, and number of hot spots.

References

1.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
49
58
.10.1115/1.1839582
2.
King
,
C. R.
,
Sekar
,
D.
,
Bakir
,
M. S.
,
Dnag
,
B.
,
Pikarsky
,
J.
, and
Meindl
,
J. D.
,
2008
, “
3D Stacking of Chips With Electrical and Microfluidic I/O Interconnects
,”
Proceedings of the 58th Electronic Components and Technology Conference
, Lake Buena Vista, FL, May 27–30, pp.
1
7
.10.1109/ECTC.2008.4549941
3.
Loh
,
G. H.
,
2010
, “
Three-Dimensional Microprocessor Design
,”
Three-Dimensional Integrated Circuit Design: EDA, Design, and Microarchitectures
,
Springer
,
New York
, Chap. VII. 10.1007/978-1-4419-0784-4_7
4.
Black
,
B.
,
Annavaram
,
M.
,
Brekelbaum
,
N.
,
De Vale
,
J.
,
Jiang
,
L.
,
Loh
,
G. H.
,
McCauley
,
D.
,
Morrow
,
P.
,
Nelson
,
D. W.
,
Pantuso
,
D.
,
Reed
,
P.
,
Rupley
,
J.
,
Shankar
,
S.
,
Shen
,
J.
, and
Webb
,
C.
,
2006
, “
Die Stacking (3D) Microarchitecture
,”
Proceedings of the 39th International Symposium on Microarchitecture
(
MICRO-39
), Orlando, FL, December 9–13, pp.
469
479
.10.1109/MICRO.2006.18
5.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y. J.
, and
Lim
,
S. K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits with Nonuniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(
4
), pp.
1249
1258
.10.1115/1.4000885
6.
Qu
,
W.
,
Mudawar
,
I.
,
Lee
,
S.
, and
Wereley
,
S.T.
,
2006
, “
Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-Channel
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
1
9
.10.1115/1.2159002
7.
Farnam
,
D. S.
,
2007
,
Comparative Analysis of Microchannel Heat Sink Configurations Subject to a Pressure Constraint
, MS thesis, Binghamton University, Binghamton, NY.
8.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
,
2004
, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4215
4231
.10.1016/j.ijheatmasstransfer.2004.04.018
9.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
10.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
,
2004
, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4215
4231
.10.1016/j.ijheatmasstransfer.2004.04.018
11.
Xie
,
X. L.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
THERMES 2007: Thermal Challenges in Next Generation Electronic Systems
, Santa Fe, NM, January 7–10, pp.
179
186
.
12.
Sasaki
,
S.
, and
Kishimoto
,
T.
,
1986
, “
Optimal Structure for Microgrooved Cooling Fin for High-Power LSI Devices
,”
Electron. Lett.
,
22
(
25
), pp.
1332
1334
.10.1049/el:19860916
13.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M.
,
2009
, “
Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4317
4326
.10.1016/j.ijheatmasstransfer.2009.03.069
14.
Glynn
,
C.
,
O'Donovan
,
T.
, and
Murray
,
D. B.
,
2006
, “
Jet Impingement Cooling
,” Department of Mechanical and Manufacturing Engineering,
Trinity College
,
Dublin, Ireland
.
15.
Stevens
,
J.
, and
Webb
,
B. W.
,
1991
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
71
78
.10.1115/1.2910554
16.
Michel
,
B.
,
2013
, “
Single-Phase, Miniaturized Convective Cooling
,”
IBM Research-Zurich
, Zurich, Switzerland.
17.
Black
,
B.
,
Annavaram
,
M.
,
Brekelbaum
,
N.
,
De Vale
,
J.
,
Jiang
,
L.
,
Loh
,
G. H.
,
McCauley
,
D.
,
Morrow
,
P.
,
Nelson
,
D. W.
,
Pantuso
,
D.
,
Reed
,
P.
,
Rupley
,
J.
,
Shankar
,
S.
,
Shen
,
J.
, and
Webb
,
C.
,
2006
, “
Die Stacking (3D) Microarchitecture
,”
Proceedings of 39th International Symposium on Microarchitecture
, Orlando, FL, pp.
469
479
.
18.
Bakir
,
M. S.
,
King
,
C.
,
Sekar
,
D.
,
Thacker
,
H.
,
Dang
,
B.
,
Huang
,
G.
,
Naeemi
,
A.
, and
Meindl
,
J. D.
,
2008
, “
3D Heterogeneous Integrated Systems: Liquid Cooling, Power Delivery and Implementation
,”
IEEE Custom Integrated Circuits Conference
(
CICC 2008
), San Jose, CA, September 21–24, pp.
663
670
.10.1109/CICC.2008.4672173
19.
Coskun
,
A. K.
,
Ayala
,
J. L.
,
Atienza
,
D.
, and
Rosing
,
T. S.
,
2009
, “
Modeling and Dynamic Management of 3D Multicore Systems With Liquid Cooling
,”
17th IFIP International Conference on Very Large Scale Integration
(
VLSI-SoC
), Florianopolis, Brazil, October 12–14, pp.
60
65
.10.1109/VLSISOC.2009.6041327
20.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y. J.
, and
Lim
,
S. K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Non-Uniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(
4
), pp.
1249
1258
.10.1115/1.4000885
21.
Chauhan
,
A.
,
Sammakia
,
B.
,
Ghose
,
K.
,
Refai-Ahmed
,
G.
, and
Agonafer
,
D.
,
2012
, “
Single-Phase Microchannel Cooling for Stacked Single Core Chip and DRAM
,”
ASME 2011 InterPACK Conference
, Portland, OR, July 6–8,
ASME
Paper No. IPACK2011-52137, pp.
225
234
.10.1115/IPACK2011-52137
22.
Karajgikar
,
S.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Sammakia
,
B.
,
Amon
,
C.
, and
Refai-Ahmed
,
G.
,
2009
, “
Development of a Numerical Model for Non-Uniformly Powered Die to Improve Both Thermal and Device Clock Performance
,”
ASME 2009 InterPACK Conference
, San Francisco, CA, July 19-23,
ASME
Paper No. InterPACK2009-89188, pp.
111
118
.10.1115/InterPACK2009-89188
23.
Tyu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. K.
,
2002
, “
Numerical Optimization of the Thermal Performance of a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2823
2827
.10.1016/S0017-9310(02)00006-6
24.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
, I
.
,
Poulikakos
,
D.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121402
.10.1115/1.4002287
25.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.10.1016/S0017-9310(02)00101-1
26.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
27.
Morini
,
G. L.
,
2005
, “
Viscous Heating in Liquid Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3637
3647
.10.1016/j.ijheatmasstransfer.2005.01.011
28.
Ansys Inc.,
2009
, ANSYS FLUENT 13.0 User's Guide, Ansys Inc., Canonsburg, PA.
29.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic
,
New York
, p.
200
.
30.
Hinton
,
G.
,
Sager
,
D.
,
Upton
,
M.
,
Boggs
,
D.
,
Carmean
,
D.
,
Kyker
,
A.
, and
Roussel
,
P.
,
2001
, “
The Microarchitecture of the Pentium® 4 Processor
,”
Intel Technol. J.
,
Q1
, pp.
1
13
, available at: http://developer.intel.com/
31.
Chauhan
,
A.
,
Sammakia
,
B.
,
Ghose
,
K.
,
Refai-Ahmed
,
G.
, and
Agonafer
,
D.
,
2010
, “
Hot Spot Mitigation Using Single-Phase Microchannels Cooling for Microprocessors
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, June 2–5, pp.
1
11
.10.1109/ITHERM.2010.5501357
33.
SUNY Binghamton,
2013
, “MARSSx86—Micro-ARchitectural and System Simulator for x86-based Systems,” State University of New York at Binghamton, Binghamton, NY, http://www.marss86.org
34.
Chauhan
,
A.
,
Sammakia
,
B.
,
Afram
,
F.
,
Ghose
,
K.
,
Refai-Ahmed
,
G.
, and
Agonafer
,
D.
,
2011
, “
Liquid Cooling of a Stacked Quad-Core Processor and DRAM Using Laminar Flow in Microchannels
,”
Proceedings of ASME
IMECE 2011, Denver, CO, November 11–17,
ASME
Paper No. IMECE2011-65866, pp.
927
940
.10.1115/IMECE2011-65866
You do not currently have access to this content.