In the present work, the potential of using foam structures impregnated with phase change materials (PCMs) as heat sinks for cooling of electronic devices has been numerically studied. Different design parameters have been investigated such as foam properties (porosity, pore size, and thermal conductivity), heat sink shape, orientation, and use of internal fins inside the foam-PCM composite. Due to huge difference in thermal properties between the PCM and the solid matrix, two energy equation model has been adopted to solve the energy conservation equations. This model can handle local thermal nonequilibrium condition between the PCM and the solid matrix. The numerical model is based on volume averaging technique, and the finite volume method is used to discretize the heat diffusion equation. The findings show that, for steady heat generation, the shape and orientation of the composite heat sink have significant impact on the system performance. Conversely, in the case of power spike input, use of a PCM with low melting point and high latent heat is more efficient.

1.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
, 2004, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4215
4231
.
2.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
, 2002, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
155
163
.
3.
Lu
,
T. J.
, 2000, “
Thermal Management of High Power Electronics With Phase Change Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2245
2256
.
4.
Chakraborty
,
S.
, and
Dutta
,
P.
, 2003, “
Analytical Solution for Heat Transfer During Cyclic Melting and Freezing of Phase Change Material Used in Electronic or Electrical Packaging
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
126
133
.
5.
Siva
,
P.
,
Yogendra
,
K.
, and
Jungho
,
K.
, 2002, “
Thermal Management of High Temperature Pulsed Electronics Using Metallic Phase Change Materials
,”
Numer. Heat Transfer, Part A
1040-7782,
42
, pp.
777
790
.
6.
Evans
,
A. G.
,
He
,
M. Y.
,
Hutchinson
,
J. W.
, and
Shaw
,
M.
, 2001, “
Temperature Distribution in Advanced Power Electronics Systems and the Effect of Phase Change Materials on Temperature Suppression During Power Pulses
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
211
217
.
7.
Marc
,
H.
,
Randy
,
D. W.
,
Stephen
,
J. P.
,
Jason
,
M. P.
,
Lou
,
M.
, and
Calvin
,
C.
, 2002, “
Transient Thermal Management of a Handset Using Phase Change Material (PCM)
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
419
426
.
8.
Tan
,
F. L.
, and
Tso
,
C. P.
, 2004, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
159
169
.
9.
Huang
,
M. J.
,
Eames
,
P. C.
, and
Norton
,
B.
, 2004, “
Thermal Regulation of Building-Integrated Photovoltaics Using Phase Change Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2715
2733
.
10.
Pal
,
D.
, and
Joshi
,
Y. K.
, 1997, “
Application of Phase Change Materials to Thermal Control of Electronic Modules: A Computational Study
,”
ASME J. Electron. Packag.
1043-7398,
119
, pp.
40
50
.
11.
Shankar
,
H.
, and
Suresh
,
V. G.
, 2004, “
Thermal Management of Transient Power Spikes in Electronics—Phase Change Energy Storage or Copper Heat Sinks
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
308
316
.
12.
Bugaje
,
M. I.
, 1997, “
Enhancing the Thermal Response of Latent Heat Storage Systems
,”
Int. J. Energy Res.
0363-907X,
21
, pp.
759
766
.
13.
Elgafy
,
A.
, and
Lafdi
,
K.
, 2005, “
Effect of Carbon Nanofiber Additives on Thermal Behavior of Phase Change Materials
,”
Carbon
0008-6223,
43
, pp.
3067
3074
.
14.
Wirtz
,
R.
,
Fuchs
,
A.
,
Narla
,
V.
,
Shen
,
Y.
,
Zhao
,
T.
, and
Jiang
,
Y.
, 2003, “
A Multi-Functional Graphite/Epoxy-Based Thermal Energy Storage Composite for Temperature Control of Sensors and Electronics
,” AIAA Paper No. 0513.
15.
Ishizuka
,
M.
, 2004, “
Operation Time Control of a High Density Packaging Using a Low Melting Point Alloy
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
(
2
), pp.
239
243
.
16.
Warsi
,
Z. U.
,
Thompson
,
J. F.
, and
Mastin
,
C. W.
, 1985,
Numerical Grid Generation Foundations and Applications
,
North-Holland
,
Amsterdam
.
17.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
, pp.
1525
1533
.
18.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
19.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
, 2005, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energy Convers. Manage.
0196-8904,
46
, pp.
847
867
.
20.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
, 2002, “
Pressure Drop Modeling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
2781
2789
.
21.
Khillarkar
,
D. B.
,
Going
,
Z. X.
, and
Mujumdar
,
A. S.
, 2000, “
Melting of a Phase Change Material in Concentric Horizontal Annuli of Arbitrary Cross-Section
,”
Appl. Therm. Eng.
1359-4311,
20
, pp.
893
912
.
22.
Mesalhy
,
O.
, 2005, “
Heat Transfer Phenomena in Foams Infiltrated With Phase Change Materials: Applications to Cooling for Electronics and Energy Storage Devices
,” Ph.D. thesis, University of Dayton, Dayton, OH.
You do not currently have access to this content.