In high-density packaging technology, one of the most important issues is the reliability of the microjoints connecting large scale integrated circuit chips to printed circuit boards electrically and mechanically. The development of nondestructive testing methods with high spatial resolution is expected to enhance reliability. An X-ray microtomography system called SP-μCT has been developed in Super Photon ring-8 GeV (SPring-8), the largest synchrotron radiation facility in Japan. In this work, SP-μCT was applied in the nondestructive evaluation of microstructure evolution, that is, the phase growth due to thermal cyclic loading in solder ball microjoints. Simulating solder microjoints used in a flip chip, specimens were fabricated by joining a Sn–Pb eutectic solder ball 100 μm in diameter to a steel pin in the usual reflow soldering process. The phase growth process was determined by observing the computed tomography (CT) images obtained consecutively at the fixed point of the target joining. In the reconstructed CT images, the distribution of the constituent phases in the Sn–Pb eutectic solder was identified based on the estimation value of the X-ray linear attenuation coefficient. Consequently, the microstructure images obtained nondestructively by SP-μCT provided us with the following useful information for evaluating the reliability of the solder microjoints. First, each phase involves not dispersing particles but a three-dimensional monolithic structure like a sponge. Second, the phase growth proceeds in such a way that the average phase size to the fourth power increases proportionally to the number of cycles. Finally, in the vicinity of the joining interface, more rapid phase growth occurs compared to the other regions because local thermal strain due to the mismatch of thermal expansion leads to a remarkable phase growth.

1.
Paulasto-Krockel
,
M.
, and
Hauck
,
T.
, 2001, “
Flip Chip Die Attach Development for Multichip Mechatronics Power Package
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
24
(
4
), pp.
300
306
.
2.
Ahn
,
E. C.
,
Cho
,
T. J.
,
Shim
,
J. B.
,
Moon
,
H. J.
,
Lyu
,
J. H.
,
Choi
,
K. W.
,
Kang
,
S. Y.
, and
Oh
,
S. Y.
, 2000, “
Reliability of Flip Chip BGA Package on Organic Substrate
,”
Proceedings of the IEEE 2000 Electronic Components and Technology Conference
, pp.
1215
1220
.
3.
Wu
,
J. D.
,
Zheng
,
P. J.
,
Lee
,
C. W.
,
Hung
,
S. C.
, and
Lee
,
J. J.
, 2003, “
A Study in Flip-Chip UBM/Bump Reliability With Effects of SnPb Solder Composition
,”
Proceedings of the IEEE 41st Annual International Reliability Physics Symposium
, pp.
132
139
.
4.
Wong
,
C. W.
,
Tay
,
C. S.
,
Tan
,
S. S.
,
Vasudevan
,
V.
,
Goh
,
E. H.
, and
Wong
,
S. F.
, 2003, “
Effect of Package and Board Pad Size on Optimum Flip Chip Ball Grid Array (FCBGA) Package Thermo-Mechanical Performance
,”
Proceedings of InterPACK2003
, Paper No. IPACK2003-35143.
5.
Lie
,
S.
, and
Ume
,
I. C.
, 2001, “
Digital Signal Processing in a Novel Flip Chip Solder Joint Defects Inspection System
,”
Proceedings of InterPACK2001
, Paper No. IPACK2001-15853.
6.
Tohmyoh
,
H.
, and
Saka
,
M.
, 2003, “
A High-Resolution Dry-Contact Acoustic Imaging of the Solder Joints for Ball Grid Array Assembly
,”
Proceedings of InterPACK2003
, Paper No. IPACK2003-35228.
7.
Sato
,
Y.
, and
Miura
,
H.
, 2005, “
Non-Destructive Inspection Method for Detecting Open Failure in Flip Chip Structures
,”
Proceedings of InterPACK2005
, Paper No. IPACK2005-73109.
8.
Moore
,
T. D.
,
Vanderstraeten
,
D.
, and
Forssell
,
M.
, 2002, “
Three-Dimensional X-Ray Laminography as a Tool for Detecting and Characterization of BGA Package Defects
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
2
), pp.
224
229
.
9.
Sasov
,
A.
, 2001, “
Microlaminography for High-Resolution BGA and Flip-Chip Inspection
,”
Proc. SPIE
0277-786X,
4406
, pp.
71
75
.
10.
Bernard
,
D.
,
Hoo
,
N.
, and
Lodge
,
D.
, 2004, “
Use of Digital X-Ray Imaging as a Process Control Tool for Lead-Free PWB Assembly
,”
Proceedings of the 2004 Surface Mount Technology Association International Conference
, pp.
548
552
.
11.
Nakano
,
T.
,
Nakashima
,
Y.
,
Nakamura
,
K.
, and
Ikeda
,
S.
, 2000, “
Observation and Analysis of Internal Structure of Rock Using X-Ray CT
,”
J. Geol. Soc. Japan
,
106
(
5
), pp.
363
378
.
12.
Danczak
,
M.
,
Wolter
,
K. J.
,
Rieske
,
R.
, and
Roth
,
H.
, 2003, “
Application of Computer Tomography in Electronic Technology
,”
Proceedings of the IEEE 26th International Spring Seminar on Electronics Technology
, pp.
108
111
.
13.
Tsuchiyama
,
A.
,
Uesugi
,
K.
,
Nakano
,
T.
, and
Ikeda
,
S.
, 2005, “
Quantitative Evaluation of Attenuation Contrast of X-Ray Computed Tomography Images Using Monochromatized Beams
,”
Am. Mineral.
0003-004X,
90
, pp.
132
142
.
14.
Buffiere
,
J. Y.
,
Maire
,
E.
,
Cloetens
,
P.
,
Lormand
,
G.
, and
Fougeres
,
R.
, 1999, “
Characterization of Internal Damage in a MMCp Using X-Ray Synchrotron Phase Contrast Microtomography
,”
Acta Mater.
1359-6454,
47
, pp.
1613
1625
.
15.
Uesugi
,
K.
,
Tsuchiyama
,
A.
,
Nakano
,
T.
,
Suzuki
,
Y.
,
Yagi
,
N.
,
Umetani
,
K.
, and
Kohmura
,
Y.
, 1999, “
Development of Micro-Tomography Imaging System for Rock and Mineral Samples
,”
Proc. SPIE
0277-786X,
3772
, pp.
214
221
.
16.
Uesugi
,
K.
,
Suzuki
,
Y.
,
Yagi
,
N.
,
Tsuchiyama
,
A.
, and
Nakano
,
T.
, 2001, “
Development of High Spatial Resolution X-Ray CT System at BL47XU in SPring-8
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
467–468
, pp.
853
856
.
17.
Tsuchiyama
,
A.
,
Uesugi
,
K.
, and
Nakano
,
T.
, 2000, “
A Study of Three-Dimensional Structures of Rocks and Minerals Using a High-Resolution X-Ray CT Method
,”
J. Geography
,
109
(
6
), pp.
845
858
.
18.
Yasuda
,
H.
,
Ohnaka
,
I.
,
Tsuchiyama
,
A.
,
Nakano
,
T.
, and
Uesugi
,
K.
, 2003, “
3D Observation of the Solidified Structure by X-Ray Micro Computerized Tomography
,”
J. Japanese Society for Synchrotron Radiation Research
,
16
(
2
), pp.
21
26
.
19.
Toda
,
H.
,
Ohgaki
,
T.
,
Uesugi
,
K.
,
Kobayashi
,
M.
,
Kuroda
,
N.
,
Kobayashi
,
T.
,
Niinomi
,
M.
,
Akahori
,
T.
,
Makii
,
K.
, and
Aruga
,
Y.
, 2006, “
Quantitative Assessment of Microstructure and Its Effects on Compression Behaviour of Aluminium Foams Via High-Resolution Synchrotron X-Ray Tomography
,”
Metall. Mater. Trans. A
1073-5623,
37A
, pp.
1211
1220
.
21.
Suzuki
,
Y.
,
Takeuchi
,
A.
,
Takano
,
H.
,
Uesugi
,
K.
,
Oka
,
T.
, and
Inoue
,
K.
, 2004, “
X-Ray Imaging Microscopy Using Fresnel Zone Plate Objective and Quasimonochromatic Undulator Radiation
,”
Rev. Sci. Instrum.
0034-6748,
75
, pp.
1155
1157
.
22.
1988, “
Basic Environmental Testing Procedures. Part 2: Tests, Test N: Change of Temperature
,” Standard No. JIS C 0025.
23.
Uesugi
,
K.
,
Suzuki
,
Y.
,
Takano
,
H.
,
Tamura
,
S.
,
Kamijo
,
N.
, and
Yagi
,
N.
, 2004, “
Direct Measurement of the Resolving Power of X-Ray CT System at SPring-8
,”
AIP Conf. Proc.
0094-243X,
705
, pp.
1316
1319
.
24.
Takano
,
H.
,
Suzuki
,
Y.
,
Uesugi
,
K.
,
Takeuchi
,
A.
, and
Yagi
,
N.
, 2001, “
PSF Measurement of Imaging Detectors With an X-Ray Microbeam
,”
Proc. SPIE
0277-786X,
4499
, pp.
126
133
.
25.
Morris
,
J. W.
, Jr.
,
Tribula
,
D.
,
Summers
,
T. S. E.
, and
Grivas
,
D.
, 1991,
Solder Joint Reliability
,
J. H.
Lau
, ed.,
Van Nostrand Reinhold
,
New York
, p.
225
.
26.
Sayama
,
T.
,
Takayanagi
,
T.
, and
Mori
,
T.
, 1999, “
Analysis of Phase Growth Process in Sn-Pb Eutectic Solder Joints
,”
Advances in Electronic Packaging
,
D.
Agonafer
,
M.
Saka
, and
Y.-C.
Lee
, eds.,
ASME
,
New York
, EEP-Vol.
26–1
, pp.
581
587
.
27.
1996, “
Standard Test Methods for Determining Average Grain Size
,” Standard No. ASTM E112.
28.
Sayama
,
T.
,
Takayanagi
,
T.
, and
Mori
,
T.
, 2001, “
A Microstructural Evaluation Method of Thermal Fatigue Crack Initiation in Sn-Pb Eutectic Solder Joints
,”
Proceedings of InterPACK’01
,
ASME
,
New York
, Paper No. IPACK2001-15572.
You do not currently have access to this content.