Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: capacity retention
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Electrochem. En. Conv. Stor. February 2021, 18(1): 011004.
Paper No: JEECS-19-1171
Published Online: April 3, 2020
... for the Li-ion battery. The structure of porous TNO/CNFs after annealing at 700 °C for 2 h is intact, and lots of holes are found on that surface of nanofibers. Porous TNO/CNFs as the anode show better electrochemical performance than TNO/CNFs, the capacity retention of porous TNO/CNFs is 81.6% (147 mA h/g...
Journal Articles
Publisher: ASME
Article Type: Research Papers
J. Electrochem. En. Conv. Stor. August 2020, 17(3): 031006.
Paper No: JEECS-19-1098
Published Online: January 11, 2020
... occur at higher temperatures during calcination. As a result, cycling of the NCA material shows a very stable capacity. The NCA material displays 97% capacity retention at 1C (1C = 200 mA/g) after 50 cycles, 87.6% at 0.3C after 100 cycles, and 93.6% at 0.1C after 70 cycles, which are better than those...