Abstract

It is well known that designing unique morphology and the structure of electrode materials is an effective strategy to achieve high-performance supercapacitors (SC). Herein, the ultrathin and porous NiCo2O4 nanosheet-based three-dimensional (3D) hierarchical electrode materials were synthesized via a simple and cost-effective solvothermal method and subsequent annealing process. Since the ultrathin and porous nanosheets could accelerate the transmission of ions and provide numerous active sites, the obtained NiCo2O4 nanosheet-based electrode exhibited great electrochemical performance with a high area capacity of 5.38 F/cm2 (2690 F/g1) at a current density of 10 mA/cm2 and good rate performance of 41% capacitance retention at 50 mA/cm2. Furthermore, the corresponding asymmetry supercapacitor was assembled by using the resulted NiCo2O4 nanosheets and active carbon as a positive electrode and a negative electrode, respectively. As expected, the corresponding supercapacitor delivered a superior energy density of 52.6 Wh/kg at a power density of 1.1 kW/kg and extraordinary capacitive retention of 80.9% after 3000 cycles at 20 mA/cm2. The high-energy storage performances suggested that the obtained ultrathin and porous NiCo2O4 nanosheet-based 3D hierarchical electrode materials could be a prospective candidate in the field of energy storage.

References

1.
Deng
,
Y. L.
,
Ji
,
Y. J.
,
Wu
,
H. M.
, and
Chen
,
F.
,
2019
, “
Enhanced Electrochemical Performance and High Voltage Window for Supercapacitor Based on Multi-Heteroatom Modified Porous Carbon Materials
,”
Chem. Commun.
,
55
(
10
), pp.
1486
1489
.
2.
Chen
,
F.
,
Ji
,
Y. J.
,
Deng
,
Y. L.
,
Ren
,
F. Y.
,
Tan
,
S. F.
, and
Wang
,
Z. Q.
,
2020
, “
Ultrasonic-Assisted Fabrication of Porous Carbon Materials Derived From Agricultural Waste for Solid-State Supercapacitors
,”
J. Mater. Sci.
,
55
(
25
), pp.
11512
11523
.
3.
Ji
,
Y. J.
,
Deng
,
Y. L.
,
Wu
,
H. M.
, and
Tong
,
Z. X.
,
2019
, “
In Situ Preparation of P, O CO-Doped Carbon Spheres for High-Energy Density Supercapacitor
,”
J. Appl. Electrochem.
,
49
(
6
), pp.
599
607
.
4.
Tong
,
Z. X.
,
Ji
,
Y. J.
,
Tian
,
Q. Z.
, and
Ouyang
,
W. M.
,
2019
, “
High Mass Loading and High-Density Flower-Like NiCo2O4 Nanosheets on Ni Foam for Superior Capacitance
,”
Chem. Commun.
,
55
(
62
), pp.
9128
9131
.
5.
BoopathiRaja
,
R.
, and
Parthibavarman
,
M.
,
2020
, “
Desert Rose Like Heterostructure of NiCo2O4/NF@PPy Composite Has High Stability and Excellent Electrochemical Performance for Asymmetric Super Capacitor Application
,”
Electrochim. Acta
,
346
, p.
136270
.
6.
Chen
,
F.
,
Ji
,
Y. J.
,
Ren
,
F. Y.
,
Tan
,
S. F.
, and
Wang
,
Z. Q.
,
2021
, “
Three-Dimensional Hierarchical Core-Shell CuCo2O4@Co(OH)2 Nanoflakes as High-Performance Electrode Materials for Flexible Supercapacitors
,”
J. Colloid Interf. Sci.
,
586
, pp.
797
806
.
7.
Mary
,
A. J. C. S.
,
Kumar
,
P. C. I.
,
Vinu
,
A. S. M.
, and
Bose
,
A. C.
,
2020
, “
Fabrication of Hybrid Supercapacitor Device Based on NiCo2O4@ZnCo2O4 and the Biomass-Derived N-Doped Activated Carbon With a Honeycomb Structure
,”
Electrochim. Acta
,
342
, p.
136062
.
8.
Li
,
Y. K.
,
Zhang
,
Z. X.
,
Chen
,
Y.
,
Chen
,
H. M.
,
Fan
,
Y. Y.
,
Li
,
Y. F.
,
Cui
,
D. F.
, and
Xue
,
C. Y.
,
2020
, “
Facile Synthesis of a Ni-Based NiCo2O4-PANI Composite for Ultrahigh Specific Capacitance
,”
Appl. Surf. Sci.
,
506
, p.
144646
.
9.
Zhang
,
Y.
,
Ru
,
Y.
,
Gao
,
H. L.
,
Wang
,
S. W.
,
Yan
,
J.
,
Gao
,
K. Z.
,
Jia
,
X. D.
,
Luo
,
H. W.
,
Fang
,
H.
,
Zhang
,
A. Q.
, and
Wang
,
L. Z.
,
2019
, “
Sol-Gel Synthesis and Electrochemical Performance of NiCo2O4 Nanoparticles for Supercapacitor Applications
,”
J. Electrochem. Sci. Eng.
,
9
(
4
), pp.
243
253
.
10.
Jiang
,
J.
,
Sun
,
Y. X.
,
Chen
,
Y. K.
,
Zhou
,
Q. Y.
,
Rong
,
H. B.
,
Hu
,
X. M.
,
Chen
,
H. T.
,
Zhu
,
L. Y.
, and
Han
,
S.
,
2020
, “
Design and Fabrication of Metal-Organic Frameworks Nanosheet Arrays Constructed by Interconnected Nanohoneycomb-Like Nickel-Cobalt Oxide for High Energy Density Asymmetric Supercapacitors
,”
Electrochim. Acta
,
342
, p.
136077
.
11.
Zhang
,
J.
,
Shewale
,
P. S.
, and
Yun
,
K. S.
,
2019
, “
Fiber-Shaped Supercapacitors Fabricated Using Hierarchical Nanostructures of NiCo2O4 Nanoneedles and MnO2 Nanoflakes on Roughened Ni Wire
,”
Energies
,
12
(
16
), p.
3127
.
12.
Li
,
S. M.
,
Yang
,
K.
,
Ye
,
P. W.
,
Jiang
,
H.
,
Zhang
,
Z.
,
Huang
,
Q.
, and
Wang
,
L. Y.
,
2019
, “
Hierarchical Interpenetrating rHGO-Decorated NiCo2O4 Nanowires Architectures for High-Performance Supercapacitors
,”
Appl. Surf. Sci.
,
473
, pp.
326
333
.
13.
Wang
,
L.
,
Jiao
,
X. Y.
,
Liu
,
P.
,
Ouyang
,
Y.
,
Xia
,
X. F.
,
Lei
,
W.
, and
Hao
,
Q. L.
,
2018
, “
Self-Template Synthesis of Yolk-Shelled NiCo2O4 Spheres for Enhanced Hybrid Supercapacitors
,”
Appl. Surf. Sci.
,
427
, pp.
174
181
.
14.
Liu
,
F.
,
Zeng
,
L. L.
,
Chen
,
Y. K.
,
Zhang
,
R. T.
,
Yang
,
R. Q.
,
Pang
,
J. B.
,
Ding
,
L. H.
,
Liu
,
H.
, and
Zhou
,
W. J.
,
2019
, “
Ni-Co-N Hybrid Porous Nanosheets on Graphene Paper for Flexible and Editable Asymmetric All-Solid-State Supercapacitors
,”
Nano Energy
,
61
, pp.
18
26
.
15.
Paliwal
,
M. K.
, and
Meher
,
S. K.
,
2020
, “
Co3O4/NiCo2O4 Perforated Nanosheets for High-Energy-Density All-Solid-State Asymmetric Supercapacitors With Extended Cyclic Stability
,”
ACS Appl. Nano Mater.
,
3
(
5
), pp.
4241
4252
.
16.
Kumar
,
L.
,
Chauhan
,
M.
,
Boruah
,
P. K.
,
Das
,
M. R.
,
Hashmi
,
S. A.
, and
Deka
,
S.
,
2020
, “
Coral-Shaped Bifunctional NiCo2O4 Nanostructure: A Material for Highly Efficient Electrochemical Charge Storage and Electrocatalytic Oxygen Evolution Reaction
,”
ACS Appl. Energy Mater.
,
3
(
7
), pp.
6793
6804
.
17.
Yang
,
G. J.
, and
Park
,
S. J.
,
2020
, “
Nanoflower-Like NiCo2O4 Grown on Biomass Carbon Coated Nickel Foam for Asymmetric Supercapacitor
,”
J. Alloy. Compd.
,
835
, p.
155270
.
18.
Luo
,
J. H.
,
Wang
,
J.
,
Liu
,
S.
,
Wu
,
W. M.
,
Jia
,
T. X.
,
Yang
,
Z.
,
Mu
,
S. C.
, and
Huang
,
Y. H.
,
2019
, “
Graphene Quantum Dots Encapsulated Tremella-Like NiCo2O4 for Advanced Asymmetric Supercapacitors
,”
Carbon
,
146
, pp.
1
8
.
19.
Qian
,
L.
,
Luo
,
S. L.
,
Wu
,
L. S.
,
Hu
,
X. R.
,
Chen
,
W.
, and
Wang
,
X.
,
2020
, “
In Situ Growth of Metal Organic Frameworks Derived Hierarchical Hollow Porous Co3O4/NiCo2O4 Nanocomposites on Nickel Foam as Self-Supported Flexible Electrode for Methanol Electrocatalytic Oxidation
,”
Appl. Surf. Sci.
,
503
, p.
144306
.
20.
Xu
,
L. Q. Y.
,
Zhang
,
L. Y.
,
Cheng
,
B.
, and
Yu
,
J. G.
,
2019
, “
Rationally Designed Hierarchical NiCo2O4-C@Ni(OH)2 Core-Shell Nanofibers for High Performance Supercapacitors
,”
Carbon
,
152
, pp.
652
660
.
21.
Yin
,
X. M.
,
Li
,
H. J.
,
Fu
,
Y. Q.
,
Yuan
,
R. M.
, and
Lu
,
J. H.
,
2020
, “
Hierarchical Core-Shell Structure of NiCo2O4 Nanosheets@HfC Nanowires Networks for High Performance Flexible Solid-State Hybrid Supercapacitor
,”
Chem. Eng. J.
,
392
, p.
124820
.
22.
Chen
,
C. X.
,
Zhao
,
C. Y.
,
Li
,
C. H.
,
Liu
,
J. H.
, and
Gui
,
D. Y.
,
2020
, “
Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials With Extremely High Cycling Stability
,”
Chem. Res. Chinese U.
,
36
(
4
), pp.
715
720
.
23.
Singh
,
A.
, and
Ojha
,
A. K.
,
2020
, “
Designing Vertically Aligned Porous NiCo2O4@MnMoO4 Core@Shell Nanostructures for High-Performance Asymmetric Supercapacitors
,”
J. Colloid Interf. Sci.
,
580
, pp.
720
729
.
24.
Zhang
,
L.
,
Dong
,
L.
,
Li
,
M. X.
,
Wang
,
P.
,
Zhang
,
J. J.
, and
Lu
,
H. B.
,
2018
, “
Ultra-High-Rate, Ultra-Long-Life Asymmetric Supercapacitors Based on Few-Crystalline, Porous NiCo2O4 Nanosheet Composites
,”
J. Mater. Chem. A
,
6
(
4
), pp.
1412
1422
.
25.
Liu
,
B. B.
,
Hou
,
J. G.
,
Zhang
,
T. T.
,
Xu
,
C. X.
, and
Liu
,
H.
,
2019
, “
A Three-Dimensional Multilevel Nanoporous NiCoO2/Ni Hybrid for Highly Reversible Electrochemical Energy Storage
,”
J. Mater. Chem. A
,
7
(
27
), pp.
16222
16230
.
26.
Chen
,
H. C.
,
Jiang
,
J. J.
,
Zhang
,
L.
,
Qi
,
T.
,
Xia
,
D. D.
, and
Wan
,
H. Z.
,
2014
, “
Facilely Synthesized Porous NiCo2O4 Flowerlike Nanostructure for High-Rate Supercapacitors
,”
J. Power Sources
,
248
, pp.
28
36
.
27.
Singh
,
A.
,
Ojha
,
S. K.
, and
Ojha
,
A. K.
,
2020
, “
Facile Synthesis of Porous Nanostructures of NiCo2O4 Grown on rGO Sheet for High Performance Supercapacitors
,”
Synthetic Met.
,
259
, p.
116215
.
28.
Zhang
,
H. F.
,
Xiao
,
D. J.
,
Li
,
Q.
,
Ma
,
Y. Y.
,
Yuan
,
S. X.
,
Xie
,
L. J.
,
Chen
,
C. M.
, and
Lu
,
C. X.
,
2018
, “
Porous NiCo2O4 Nanowires Supported on Carbon Cloth for Flexible Asymmetric Supercapacitor With High Energy Density
,”
J. Energ. Chem.
,
27
(
1
), pp.
195
202
.
29.
Ding
,
R.
,
Qi
,
L.
,
Jia
,
M. J.
, and
Wang
,
H. Y.
,
2013
, “
Facile and Large-Scale Chemical Synthesis of Highly Porous Secondary Submicron/Micron-Sized NiCo2O4 Materials for High-Performance Aqueous Hybrid AC-NiCo2O4 Electrochemical Capacitors
,”
Electrochim. Acta
,
107
, pp.
494
502
.
30.
Chen
,
X.
,
Li
,
H.
,
Xu
,
J. Z.
,
Jaber
,
F.
,
Musharavati
,
F.
,
Zalezhad
,
E.
,
Bae
,
S.
,
Hui
,
K. S.
,
Hui
,
K. N.
, and
Liu
,
J. X.
,
2020
, “
Synthesis and Characterization of a NiCo2O4@NiCo2O4 Hierarchical Mesoporous Nanoflake Electrode for Supercapacitor Applications
,”
Nanomaterials
,
10
(
7
), p.
1292
.
31.
Kumar
,
D. R.
,
Prakasha
,
K. R.
,
Prakash
,
A. S.
, and
Shim
,
J. J.
,
2020
, “
Direct Growth of Honeycomb-Like NiCo2O4@Ni Foam Electrode for Pouch-Type High-Performance Asymmetric Supercapacitor
,”
J. Alloy. Compd.
,
836
, p.
155370
.
32.
Zhang
,
C.
,
Xie
,
Z. H.
,
Yang
,
W. F.
,
Liang
,
Y.
,
Meng
,
D. D.
,
He
,
X.
,
Liang
,
P.
, and
Zhang
,
Z. H.
,
2020
, “
NiCo2O4/Biomass-Derived Carbon Composites as Anode for High-Performance Lithium Ion Batteries
,”
J. Power Sources
,
451
, p.
227761
.
33.
Ren
,
X.
,
Du
,
Y. Y.
,
Song
,
M. Y.
,
Chen
,
Y. J.
,
Zhou
,
Y. H.
,
Ma
,
F. W.
, and
Wan
,
J. F.
,
2019
, “
Facile Preparation of Mesoporous NiCo2S4 Microaggregates Constructed by Nanoparticles via Puffing NiCo2O4 Cubes for High Performance Asymmetric Supercapacitors
,”
J. Alloy Compd.
,
806
, pp.
1481
1490
.
34.
Sethi
,
M.
,
Shenoy
,
U. S.
, and
Bhat
,
D. K.
,
2020
, “
Porous Graphene-NiCo2O4 Nanorod Hybrid Composite as a High Performance Supercapacitor Electrode Material
,”
New J. Chem.
,
44
(
10
), pp.
4033
4041
.
35.
Yi
,
R. H.
,
Wang
,
R. C.
,
Duan
,
J. Q.
,
Fang
,
Z.
,
Li
,
H. S.
,
Chen
,
Z. Y.
,
Zhou
,
A. J.
, and
Sun
,
Y. M.
,
2020
, “
Rational Design of Hierarchically Porous NiCo2O4 and Bi2O3 Nanostructure: Anchored on 3D Nitrogen Doped Carbonized Melamine Foam for Flexible Asymmetric Supercapacitor
,”
Electrochim. Acta
,
338
, p.
135845
.
36.
Hu
,
Y. R.
,
Wang
,
Q. F.
,
Chen
,
S. F.
,
Xu
,
Z. J.
,
Miao
,
M. H.
, and
Zhang
,
D. H.
,
2020
, “
Flexible Supercapacitors Fabricated by Growing Porous NiCo2O4 In Situ on a Carbon Nanotube Film Using a Hyperbranched Polymer Template
,”
ACS Appl. Energy Mater.
,
3
(
4
), pp.
4043
4050
.
37.
Singh
,
A.
,
Ojha
,
S. K.
,
Singh
,
M.
, and
Ojha
,
A. K.
,
2020
, “
Controlled Synthesis of NiCo2S4@NiCo2O4 Core@Shell Nanostructured Arrays Decorated Over the rGO Sheets for High-Performance Asymmetric Supercapacitor
,”
Electrochim. Acta
,
349
, p.
136349
.
38.
Ren
,
F. Y.
,
Ji
,
Y. J.
,
Tan
,
S. F.
, and
Chen
,
F.
,
2021
, “
Sponge-Like NiCo2S4 Nanosheets Supported on Nickel Foam as High-Performance Electrode Materials for Asymmetric Supercapacitors
,”
Inorg. Chem. Front.
,
8
(
1
), pp.
72
78
.
39.
Ji
,
Y. J.
,
Deng Y
,
L.
,
Chen
,
F.
,
Wang
,
Z. Q.
,
Lin
,
Y. Z.
, and
Guan
,
Z. H.
,
2020
, “
Ultrathin Co3O4 Nanosheets Anchored on Multi-Heteroatom Doped Porous Carbon Derived From Biowaste for High Performance Solid-State Supercapacitors
,”
Carbon
,
156
, pp.
359
369
.
40.
Osaimany
,
P.
,
Samuel
,
A. S.
,
Johnbosco
,
Y.
,
Kharwar
,
Y. P.
, and
Chakravarthy
,
V.
,
2019
, “
A Study of Synergistic Effect on Oxygen Reduction Activity and Capacitive Performance of NiCo2O4/rGO Hybrid Catalyst for Rechargeable Metal-Air Batteries and Supercapacitor Applications
,”
Composites, Part B
,
176
, p.
107327
.
41.
Wang
,
W. D.
,
Zhang
,
P. P.
,
Gao
,
S. Q.
,
Wang
,
B. Q.
,
Wang
,
X. C.
,
Li
,
M.
,
Liu
,
F.
, and
Cheng
,
J. P.
,
2020
, “
Core-Shell Nanowires of NiCo2O4@Alpha-Co(OH)2 on Ni Foam With Enhanced Performances for Supercapacitors
,”
J. Colloid Interf. Sci
,
579
, pp.
71
81
.
42.
Cheng
,
C. F.
,
Li
,
X.
,
Liu
,
K.
,
Zou
,
F.
,
Tung
,
W. Y.
,
Huang
,
Y. F.
,
Xia
,
X.
,
Wang
,
C. L.
,
Vogt
,
B. D.
, and
Zhu
,
Y.
,
2019
, “
A High-Performance Lithium-ion Capacitor With Carbonized NiCo2O4 Anode and Vertically-Aligned Carbon Nanoflakes Cathode
,”
Energy Storage Mater.
,
22
, pp.
265
274
.
43.
Xue
,
C. Y.
,
Chen
,
Y.
,
Li
,
Y. K.
,
Chen
,
H. M.
,
Cui
,
D. F.
, and
Lin
,
L. W.
,
2019
, “
NiCo2O4@TiO2 Electrode Based on Micro-Region Heterojunctions for High Performance Supercapacitors
,”
Appl. Surf. Sci.
,
493
, pp.
994
1003
.
44.
Zhao
,
D. P.
,
Wu
,
X.
, and
Guo
,
C. F.
,
2018
, “
Hybrid MnO2@NiCo2O4 Nanosheets for High Performance Asymmetric Supercapacitors
,”
Inorg. Chem. Front.
,
5
(
6
), pp.
1378
1385
.
45.
Zhao
,
N.
,
Fan
,
H. Q.
,
Ma
,
J. W.
,
Zhang
,
M. C.
,
Wang
,
C.
,
Li
,
H.
,
Jiang
,
X. B.
, and
Cao
,
X. Q.
,
2019
, “
Entire Synergistic Contribution of Electrodeposited Battery-Type NiCo2O4@Ni4.5Co4.5S8 Composite for High-Performance Supercapacitors
,”
J. Power Sources
,
439
, p.
227097
.
46.
Gao
,
K.
, and
Li
,
S. D.
,
2020
, “
Hollow Fibrous NiCo2O4 Electrodes With Controllable Zn Substitution Sites for Supercapacitors
,”
J. Alloy. Compds.
,
832
, p.
154927
.
47.
Lai
,
Y. H.
,
Gupta
,
S.
,
Hsiao
,
C. H.
,
Lee
,
C. Y.
, and
Tai
,
N. H.
,
2020
, “
Multilayered Nickel Oxide/Carbon Nanotube Composite Paper Electrodes for Asymmetric Supercapacitors
,”
Electrochim. Acta
,
354
, p.
136744
.
48.
Ahmad
,
S.
,
Yang
,
C.
,
Xie
,
W. Y.
,
Deng
,
Z. B.
,
Zhang
,
H.
,
Zhao
,
Y. L.
, and
Su
,
X. T.
,
2020
, “
Molten Salt-Templated Synthesis of Ternary NiS-NiCo2O4@C Composites as High Performance Catalysts for 4-Nitro Phenol Reduction and Supercapacitor
,”
Carbon
,
158
, pp.
912
921
.
49.
Ren
,
X.
,
Du
,
Y. Y.
,
Song
,
M. Y.
,
Zhou
,
Y. H.
,
Chen
,
Y. J.
,
Ma
,
F. W.
, and
Wan
,
J. F.
,
2019
, “
In-Situ Transformation of Ni Foam Into Sandwich Nanostructured Co1.29Ni1.71O4 Nanoparticle@CoNi2S4 Nanosheet Networks for High-Performance Asymmetric Supercapacitors
,”
Chem. Eng. J.
,
375
, p.
122063
.
50.
Lin
,
F. J.
,
Yuan
,
M.
,
Chen
,
Y.
,
Huang
,
Y. P.
,
Lian
,
J. B.
,
Qiu
,
J. X.
,
Xu
,
H.
,
Li
,
H. M.
,
Yuan
,
S. Q.
,
Zhao
,
Y.
, and
Cao
,
S. S.
,
2019
, “
Advanced Asymmetric Supercapacitor Based on Molybdenum Trioxide Decorated Nickel Cobalt Oxide Nanosheets and Three-Dimensional α-FeOOH/rGO
,”
Electrochim. Acta
,
320
, p.
134580
.
51.
Wei
,
C. Z.
,
Zhang
,
R.
,
Zheng
,
X.
,
Ru
,
Q. L.
,
Chen
,
Q. Y.
,
Cui
,
C.
,
Li
,
G.
, and
Zhang
,
D. J.
,
2018
, “
Hierarchical Porous NiCo2O4/CeO2 Hybrid Materials for High Performance Supercapacitors
,”
Inorg. Chem. Front.
,
5
(
12
), pp.
3126
3134
.
You do not currently have access to this content.