The objective of this project is to develop a proton exchange membrane (PEM) fuel cell powered scooter with a designed digital controller to regulate the air supply to PEM fuel cell stack. A 500-Watt (W) electric power train was chosen as a platform for the scooter. Two 300 W PEM fuel cell systems, each containing 63 cells, were used to charge 48-Volt batteries that powered an electric motor. The energy carrier (hydrogen) was stored in two metal hydride tanks, each one containing 85 gs of hydrogen pressurized to 250 psig. The output hydrogen pressure from each tank was maintained at 5.8 psi by a two-stage pressure regulator, and then delivered to each fuel cell stack. To regulate the voltage of each PEM fuel cell under different load conditions, two step down DC/DC converters were used. These converters were connected in series to power the motor controller and charge the batteries. The batteries then supplied power to the 500 W brushless motor mounted to the hub of the rear wheel to save space. After all modifications were completed, most of the parts of the scooter stayed the same except for the panel under the seat—where larger space is needed for accommodating the hydrogen tanks. The weight of the scooter did not change significantly, because the weight of the hydrogen tanks (6.5 kg each) and fuel cell stacks (1.7 kg each) was partially compensated by replacing the batteries from the old ones that weighed 17.5 kg to new ones that weighed 9 kg.

References

1.
Zoulias
,
E.
, and
Lymberopoulos
,
N.
, 2007, “
Techno-Economic Analysis of the Integration of Hydrogen Energy Technologies in Renewable Energy-Based Stand-Alone Power Systems
,”
Renewable Energy
,
32
, pp.
680
696
.
2.
Mason
,
J.
, 2007, “
World Energy Analysis: H2 Now or Later?
Energy Policy
,
35
, pp.
1315
1329
.
3.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel-Cell Model
,”
J. Electrochem. Soc.
,
138
, pp.
2334
2342
.
4.
Biyikoglu
,
A.
, 2005, “
Review of Proton Exchange Membrane Fuel Cell Models
,”
Int. J. Hydrogen Energy
,
30
, pp.
1181
1212
.
5.
Sorensen
,
B.
, 2005,
Hydrogen and Fuel Cells: Emerging Technologies and Applications
,
Academic
,
New York
.
6.
Breziner
,
L. C.
,
Strahs
,
P.
,
Weaver
,
J.
,
Garrant
,
C.
,
Shaffer
,
K.
,
Diloyan
,
G.
, and
Hutapea
,
P.
, 2010, “
Development of a Hybrid PEM Fuel Cell Vehicle
,”
ASME 8th Annual Fuel Cell Science, Engineering & Technology Conference
,
Brooklyn
,
New York
, June 14–16.
7.
Laurencelle
,
F.
,
Chahine
,
R.
,
Hamelin
,
J.
,
Agbossou
,
K.
,
Fournier
,
M.
,
Bose
,
T. K.
, and
Laperrière
,
A.
, 2001, “
Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack
,”
Fuel Cells
,
1
, pp.
66
71
.
8.
Wang
,
C.
, 2004, “
Fundamental Models for Fuel Cell Engineering
Chem. Rev.
,
104
, pp.
4727
4766
.
9.
Borup
,
R.
,
Meyers
,
J.
,
Pivovar
,
B.
,
Kim
,
Y. S.
,
Mukundan
,
R.
,
Garland
,
N.
,
Myers
,
D.
,
Wilson
,
M.
,
Garzon
,
F.
,
Wood
,
D.
,
Zelenay
,
P.
,
More
,
K.
,
Stroh
,
K.
,
Zawodzinski
,
T.
,
Boncella
,
J.
,
McGrath
,
J. E.
,
Inaba
,
M.
,
Miyatake
,
K.
,
Hori
,
M.
,
Ota
,
K.
,
Ogumi
,
Z.
,
Miyata
,
S.
,
Nishikata
,
A.
,
Siroma
,
Z.
,
Uchimoto
,
Y.
,
Yasuda
,
K.
,
Kimijima
,
K.
, and
Iwashita
,
N.
, 2007, “
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
,”
Chem. Rev.
,
107
, pp.
3904
3951
.
10.
Buchi
,
F. N.
, and
Srinivasan
,
S.
, 1997, “
Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reactant Gases
,”
J. Electrochem. Soc.
,
144
, pp.
2767
2772
.
11.
Yan
,
Q.
,
Toghiani
,
H.
,. and
Causey
,
H.
, 2006, “
Steady State and Dynamic Performance of Proton Exchange Membrane Fuel Cells (PEMFCs) Under Various Operating Conditions and Load Changes
,”
J. Power Sources
,
161
, pp.
492
502
.
12.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
, 2004, “
Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Appl. Surf. Sci.
,
227
, pp.
56
72
.
13.
Kim
,
Y. B.
, 2010, “
Improving Dynamic Performance of Proton-Exchange Membrane Fuel Cell System Using Time Delay Control
,”
J. Power Sources
,
195
, pp.
6329
6341
.
14.
Corbo
,
P.
,
Migliardini
,
F.
, and
Veneri
,
O.
, 2009, “
PEMFC Stacks as Power Sources for Hybrid Propulsion Systems
,”
Int. J. Hydrogen Energy
,
34
, pp.
4635
4644
.
16.
Yap
,
W. K.
, and
Karri
,
V.
, 2008, “
Regenerative Energy Control System for Plug-in Hydrogen Fuel Cell Scooter
,”
Int. J. Energy Research
,
32
, pp.
783
792
.
17.
Sripakagorn
,
A.
, and
Limwuthigraijirat
,
N.
, 2009, “
Experimental Assessment of Fuel Cell/supercapacitor Hybrid System for Scooters
,”
Int. J. Hydrogen Energy
,
34
, pp.
6036
6044
.
18.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
, 2nd ed.,
Wiley
,
New York
.
19.
Barbir
,
F.
, and
Gomez
,
T.
, 1996, “
Efficiency and Economics of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
21
, pp.
891
901
.
20.
Cooper
,
K. R.
,
Smith
,
M.
, and
Brownwell
,
M.
, 2006, “
Humidity and Fuel Cell Testing
,”
Fuel Cell Magazine
,
6
, pp.
1
6
.
21.
Moran
,
M.
, and
Shapiro
,
H.
, 2000,
Fundamentals of Engineering Thermodynamics
, 4th ed.,
Wiley
,
New York
.
22.
Paralax, 2003, Basic Stamp Syntax and Reference Manual, Version 2.2, Paralax, Inc., Rocklin, CA, see http://www.parallax.comhttp://www.parallax.com.
23.
Pololu, 2004, Micro Dual Serial Motor Controller, Pololu, Inc., Las Vegas, NY, see http://www.pololu.com/http://www.pololu.com/
24.
Maxim Integrated Products, 2002, Cold-Junction-Compensation Thermocouple-to-Digital Converter MAX6674, Maxim Integrated Products, Inc., Sullyvale, CA, see http://www.maxim-ic.comhttp://www.maxim-ic.com.
25.
CUI, 2002, Current Transducer SCD10PU, CUI, Inc., Tualatin, OR, see http://www.cui.com/http://www.cui.com/
26.
Ovonic Hydrogen Systems, 2005, Solid Hydrogen Storage System, Technical Specifications, Ovonic Hydrogen LLC, Rochester Hills, MI.
You do not currently have access to this content.