This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers diffusion of cathode gas species in gas diffusion layers and catalyst layer, transport of protons in the membrane and the catalyst layers, and double layer capacitive effects in the catalyst layers. The model has been fitted simultaneously to a polarization curve and to an impedance spectrum recorded in the laboratory. A simultaneous fit to both curves is not achieved. In order to investigate the effects of the fitting parameters on the simulation results, a parameter variation study is carried out. It is concluded that some of the fitting parameters assume values which are not realistic. In order to remedy this, phenomena neglected in this version of the model must be incorporated in future versions.

References

1.
Das
,
S. K.
,
Reis
,
A.
, and
Berry
,
K.
, 2009, “
Experimental Evaluation of CO Poisoning on the Performance of a High Temperature Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
193
(
2
), pp.
691
698
.
2.
Krishnan
,
P.
,
Park
,
J.-S.
, and
Kim
,
C.-S.
, 2006, “
Performance of a Poly(2,5-benzimidazole) Membrane Based High Temperature PEM Fuel Cell in the Presence of Carbon Monoxide
,”
J. Power Sources
,
159
(
2
), pp.
817
823
.
3.
Modestov
,
A.
,
Tarasevich
,
M.
,
Filimonov
,
V.
, and
Davydova
,
E.
, 2010, “
CO Tolerance and CO Oxidation at Pt and Pt-Ru Anode Catalysts in Fuel Cell with Polybenzimidazole-H3PO4 Membrane
,”
Electrochim. Acta
,
55
(
20
), pp.
6073
6080
.
4.
Rao
,
C. V.
,
Parrondo
,
J.
,
Ghatty
,
S. L.
, and
Rambabu
,
B.
, 2010, “
High Temperature Polymer Electrolyte Membrane Fuel Cell Performance of PtxCoy/C Cathodes
,”
J. Power Sources
,
195
(
11
), pp.
3425
3430
.
5.
Seland
,
F.
,
Berning
,
T.
,
Børresen
,
B.
, and
Tunold
,
R.
, 2006, “
Improving the Performance of High-Temperature PEM Fuel Cells Based on PBI Electrolyte
,”
J. Power Sources
,
160
(
1
), pp.
27
36
.
6.
Scholta
,
J.
,
Messerschmidt
,
M.
,
Jörissen
,
L.
, and
Hartnig
,
C.
, 2009, “
Externally Cooled High Temperature Polymer Electrolyte Membrane Fuel Cell Stack
,”
J. Power Sources
,
190
, pp.
83
85
.
7.
Pan
,
C.
,
He
,
R.
,
Li
,
Q.
,
Jensen
,
J. O.
,
Bjerrum
,
N. J.
,
Hjulmand
,
H. A.
, and
Jensen
,
A. B.
, 2005, “
Integration of High Temperature PEM Fuel Cells with a Methanol Reformer
,”
J. Power Sources
,
145
(
2
), pp.
392
398
.
8.
Zhai
,
Y.
,
Zhang
,
H.
,
Xing
,
D.
, and
Shao
,
Z.-G.
, 2007, “
The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test
,”
J. Power Sources
,
164
(
1
), pp.
126
133
.
9.
Zhai
,
Y.
,
Zhang
,
H.
,
Zhang
,
Y.
, and
Xing
,
D.
, 2007, “
A Novel H3PO4/Nafion-PBI Composite Membrane for Enhanced Durability of High Temperature PEM Fuel Cells
,”
J. Power Sources
,
169
(
2
), pp.
259
264
.
10.
Hu
,
J.
,
Zhang
,
H.
,
Zhai
,
Y.
,
Liu
,
G.
, and
Yi
,
B.
, 2006, “
500 h Continuous Aging Life Test on PBI/H3PO4 High-Temperature PEMFC
,”
Int. J. Hydrogen Energy
,
31
(
13
), pp.
1855
1862
.
11.
Moçotéguy
,
P.
,
Ludwig
,
B.
,
Scholta
,
J.
,
Barrera
,
R.
, and
Ginocchio
,
S.
, 2008, “
Long Term Testing in Continuous Mode of HT-PEMFC Based H3PO4/PBI Celtec-P MEAs for μ-CHP Applications
,”
Fuel Cells
,
9
, pp.
325
348
.
12.
Modestov
,
A.
,
Tarasevich
,
M.
,
Filimonov
,
V.
, and
Zagudaeva
,
N.
, 2009, “
Degradation of High Temperature MEA with PBI-H3PO4 Membrane in a Life Test
,”
Electrochim. Acta
,
54
(
27
), pp.
7121
7127
.
13.
Andreasen
,
S. J.
,
Jespersen
,
J. L.
,
Schaltz
,
E.
, and
Kær
,
S. K.
, 2009, “
Characterisation andModelling of a High Temperature PEM Fuel Cell Stack Using Electrochemical Impedance Spectroscopy
,”
Fuel Cells
,
9
, pp.
463
473
.
14.
Jespersen
,
J. L.
,
Schaltz
,
E.
, and
Kær
,
S. K.
, 2009, “
Electrochemical Characterization of a Polybenzimidazole-Based High Temperature Proton Exchange Membrane Unit Cell
,”
J. Power Sources
,
191
(
2
), pp.
289
296
.
15.
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
, and
Zhang
,
J.
, 2007, “
Polybenzimidazole-Membrane-Based PEM Fuel Cell in the Temperature Range of 120–200 °C
,”
ACS San Francisco 2006, Fuel and Cell Symposium. American Chemical Society National Meeting
. San Francisco, CA, Sept. 10–14, 2006 [J. Power Sources, 172(1), pp. 163–171].
16.
Korsgaard
,
A. R.
,
Refshauge
,
R.
,
Nielsen
,
M. P.
,
Bang
,
M.
, and
Kær
,
S. K.
, 2006, “
Experimental Characterization and Modeling of Commercial Polybenzimidazole-Based MEA Performance
,”
J. Power Sources
,
162
(
1
), pp.
239
245
.
17.
Korsgaard
,
A. R.
,
Nielsen
,
M. P.
,
Bang
,
M.
, and
Kær
,
S. K.
, 2006, “
Modeling of CO Influence in PBI Electrolyte PEM Fuel Cells
,”
Proceedings of the 4th International ASME Conference on Fuel Cell Science, Engineering and Technology
, ASME, New York.
18.
Cheddie
,
D. F.
, and
Munroe
,
N. D.
, 2006, “
Three Dimensional Modeling of High Temperature PEM Fuel Cells
,”
J. Power Sources
,
160
(
1
), pp.
215
223
.
19.
Peng
,
J.
, and
Lee
,
S. J.
, 2006, “
Numerical Simulation of Proton Exchange Membrane Fuel Cells at High Operating Temperature
,” (
Special issue including selected papers from the International Power Sources Symposium 2005 together with regular papers
[J. Power Sources,
162
(
2
), pp.
1182
1191
]).
20.
Peng
,
J.
,
Shin
,
J.
, and
Song
,
T.
, 2008, “
Transient Response of High Temperature PEM Fuel Cell
,”
J. Power Sources
,
179
(
1
), pp.
220
231
.
21.
Korsgaard
,
A. R.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
, 2008, “
Part One: A Novel Model of HTPEM-Based Micro-Combined Heat and Power Fuel CellsSystem
,”
Int. J. Hydrogen Energy
,
33
, pp.
1909
1920
.
22.
Korsgaard
,
A. R.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
, 2008, “
Part Two: Control of a Novel HTPEM-Based Micro Combined Heat and Power Fuel Cell System
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1921
1931
.
23.
Yuan
,
X.
,
Sun
,
J. C.
,
Blanco
,
M.
,
Wang
,
H.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
, 2006, “
AC Impedance Diagnosis of a 500 W PEM Fuel Cell Stack: Part I: Stack Impedance
,”
J. Power Sources
,
161
(
2
), pp.
920
928
.
24.
Hu
,
J.
,
Zhang
,
H.
,
Hu
,
J.
,
Zhai
,
Y.
, and
Yi
,
B.
, 2006, “
Two Dimensional Modeling Study of PBI/H3PO4 High Temperature PEMFCs Based on Electrochemical Methods
,” (
Special issue including selected papers presented at the International Workshop on Molten Carbonate Fuel Cells and Related Science and Technology 2005 together with regular papers
[J. Power Sources,
160
(
2
), pp.
1026
1034
]).
25.
Hu
,
J.
,
Zhang
,
H.
, and
Gang
,
L.
, 2008, “
Diffusion-Convection/Electrochemical Model Studies on Polybenzimidazole (PBI) Fuel Cell Based on AC Impedance Technique
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1019
1027
.
26.
Scott
,
K.
,
Pilditch
,
S.
, and
Mamlouk
,
M.
, 2007, “
Modelling and Experimental Validation of a High Temperature Polymer Electrolyte Fuel Cell
,”
J. Appl. Electrochemistry
,
37
(
11
), pp.
1245
1259
.
27.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1996, “
Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy
,”
J. Electrochem. Soc.
143
(
2
), pp.
587
599
.
28.
Jaouen
,
F.
, and
Lindbergh
,
G.
, 2003, “
Transient Techniques for Investigating Mass-transport Limitations in Gas Diffusion Electrodes I. Modeling of the PEFC Cathode
,”
J. Electrochem. Soc.
150
(
12
), pp.
A1699
A1710
.
29.
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Wiezell
,
K.
, 2003, “
Transient tTechniques for iInvestigating Mass-Transport Limitations in Gas Diffusion Electrodes II. Experimental Characterisation of the PEFC Cathode
,”
J. Electrochem. Soc.
150
(
12
), pp.
A1711
-
A1717
.
30.
Wiezell
,
K.
,
Gode
,
P.
, and
Lindbergh
,
G.
, 2006, “
Steady-State and EIS Investigations of Hydrogen Electrodes and Membranes in Polymer Electrolyte Fuel Cells I. Modeling
,”
J. Electrochem. Soc.
,
153
(
4
), pp.
A749
A758
.
31.
Wiezell
,
K.
,
Gode
,
P.
, and
Lindbergh
,
G.
, 2006, “
Steady-State and EIS Investigations of Hydrogen Electrodes and Membranes in Polymer Electrolyte Fuel Cells II. Experimental
,”
J. Electrochem. Soc.
,
153
(
4
), pp.
A759
A764
.
32.
Franco
,
A. A.
,
Schott
,
P.
,
Jallut
,
C.
, and
Maschke
,
B.
, 2007, “
A Multi-Scale Dynamic Mechanistic Model for the Transient Analysis of PEFCs
,”
Fuel Cells
,
7
(
2
), pp.
99
117
.
33.
Franco
,
A. A.
, and
Gerard
,
M.
, 2008, “
Multiscale Model of Carbon Corrosion in a PEFC: Coupling with Electrocatalysis and Impact on Performance Degradation
,”
J. Electrochem. Soc.
,
155
(
4
), pp.
B367
B384
.
34.
Franco
,
A.
, and
Tembely
,
M.
, 2007, “
Transient Multiscale Modeling of Aging Mechanisms in a PEFC Cathode
,”
J. Electrochem. Soc.
154
(
7
), pp.
B712
B723
.
35.
Schneider
,
I. A.
,
Freunberger
,
S. A.
,
Kramer
,
D.
,
Wokaun
,
A.
, and
Scherer
,
G. G.
, 2007, “
Oscillations in Gas Channels I. The Forgotten Player in Impedance Spectroscopy in PEFCs
,”
J. Electrochem. Soc.
,
154
(
4
), pp.
B383
B388
.
36.
Schneider
,
I. A.
,
Kramer
,
D.
, Wokaun, A,. and
Scherer
,
G. G.
, 2007, “
Oscillations in Gas Channels II. Unraveling the Characteristics of the Low Frequency Loop in Air-Fed PEFC Impedance Spectra
,”
J. Electrochem. Soc.
154
(
8
), pp.
B770
B782
.
37.
O’Hayre
,
R. P.
,
Cha
,
S.-W.
,
Colella
,
W. G.
, and
Prinz
,
F. B.
, 2008,
Fuel Cell Fundamentals
,
Wiley
,
New York
.
38.
Bang
,
M.
, 2004, “
Modeling of Diffusive Convective and Electrochemical Processes in PEM Fuel Cells
,” Ph.D. thesis, Aalborg University, Aalborg, Denmark.
39.
Vang
,
J. R.
, 2010, “
An Electrochemical Impedance Model for HTPEM Fuel Cells
,” Master’s thesis, Aalborg University, Aalborg, Denmark.
You do not currently have access to this content.