In this paper, a fully coupled non-isothermal, electrochemical, and transport 3D model for a 10-cell PEMFC stack with coolant channels is constructed and implemented to examine and compare the influence factors to the stack performance. The first case to be considered is under different thermal operation conditions, including thermostatic, adiabatic, and heat exchange operation. The corresponding results show that a better uniformity and the largest stack output power density can be obtained under heat exchange operation. The other case is to compare the effects of heat transfer coefficients for different materials (ranging from 5 W/(m2·K) to 50 W/(m2·K)) on the spatial non-homogeneity of stack voltage and output power density. Numerical results indicate that the degree of the non-uniformity of individual cell voltage can be minimized, and the output power density can be elevated to a certain degree when the heat transfer coefficient is set as 25 W/(m2·K). In addition, an attempt is carried out to investigate the changes of some important variables due to the tolerance stacking or performance degradation, where we assume some cells’ contact resistance increases. We observe that a large jump of cell voltage and temperature occurs, which can be used as a detection signal for stack safety operation.

References

1.
Wang
,
C.-Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
J. Electrochem. Soc.
,
104
, pp.
4727
4766
.
2.
Department of Energy
,
2007
, “
Technical Plan—Fuel Cells
,”
Department of Energy
.
3.
Millera
,
M.
, and
Bazylaka
,
A.
, 2011, “
A Review of Polymer Electrolyte Membrane Fuel Cell Stack Testing
,”
J. Power Sources
,
196
, pp.
601
613
.
4.
Le
,
A. D.
, and
Zhou
B.
, 2009,
“A 3D Single-Phase Numerical Model for a PEMFC Stack,”
Proceedings of the 7th International Conference on Fuel Cell Science, Engineering, and Technology, June 8–10, pp.
91
100
.
5.
Zhai
,
S.
,
Sun
,
P.-T.
,
Chen
,
F.-X.
,
Zhang
,
C.-S.
, and
Zhou
,
S.
, 2010,
“Analysis of Non-Uniform Cell Voltage Distribution in a PEMFC Stack,”
Proceedings of the 8th International Conference on Fuel Cell Science, Engineering, and Technology, June 14–15, pp.
481
488
.
6.
Gao
,
F.
,
Blunier
,
B.
,
Miraoui
,
A.
, and
El-Moudni
,
A.
, 2010, “
Proton Exchange Membrane Fuel Cell Multi-Physical Dynamics and Stack Spatial Non-Homogeneity Analyses
,”
J. Power Sources
,
195
, pp.
7609
7626
.
7.
Shimpalee
,
S.
,
Ohashi
,
M.
,
Van Zee
,
J. W.
,
Ziegler
,
C.
,
Stoeckmann
,
C.
,
Sadeler
,
C.
, and
Hebling
,
C.
, 2009, “
Experimental and Numerical Studies of Portable PEMFC Stack
,”
Electrochim. Acta
,
54
, pp.
2899
2911
.
8.
Park
,
Y. H.
, and
Caton
,
J. A.
, 2008, “
Development of a PEM Stack and Performance Analysis Including the Effects of Water Content in the Membrane and Cooling Method
,”
J. Power Sources
,
179
, pp.
584
591
.
9.
Shan
,
Y.
, and
Choe
S.-Y.
, 2006, “
Modeling and Simulation of a PEM Fuel Cell Stack Considering Temperature Effects
,”
J. Power Sources
,
158
, pp.
274
286
.
10.
Park
,
S.-K.
, and
Choe
,
S.-Y.
, 2008, “
Dynamic Modeling and Analysis of a 20-cell PEM Fuel Cell Stack Considering Temperature and Two-Phase Effects
,”
J. Power Sources
,
179
, pp.
660
672
.
11.
Park
,
S.-K.
, and
Choe
,
S.-Y.
, 2009, “
Modeling and Experimental Analyses of a Two-Cell Polymer Electrolyte Membrane Fuel Cell Stack Emphasizing Individual Cell Characteristics
,”
J. Fuel Cell Sci. Technol.
,
6
(
1
), p.
011019
.
12.
Park
,
J.
, and
Li
,
X.-G.
, 2006, “
Effect of Flow and Temperature Distribution on the Performance of a PEM Fuel Cell Stack
,”
J. Power Sources
,
162
, pp.
444
459
.
13.
Lee
,
H. I.
,
Lee
,
C. H.
,
Oh
,
T. Y.
,
Choi
,
S. G.
,
Park
,
I. W.
, and
Baek
,
K. K.
, 2002, “
Development of 1 kW Class Polymer Electrolyte Membrane Fuel Cell Power Generation System
,”
J. Power Sources
,
107
, pp.
110
119
.
14.
Pérez-Page
,
M.
, and
Pérez-Herranz
,
V.
, 2009, “
Effect of the Operation and Humidification Temperatures on the Performance of a PEM Fuel Cell Stack
,” 9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC 9) - 216th Meeting of the Electrochemical Society, Vienna, Austria, Oct. 4–9, pp.
733
745
.
15.
Zhai
,
S.
,
Sun
,
P.-T.
,
Chen
,
F.-X.
,
Zhou
,
S.
, and
Zhang
,
C.-S.
, 2010, “
Collaborative Simulation for Dynamical PEMFC Power Systems
,”
Int. J. Hydrogen Energy
,
35
, pp.
8772
8782
.
16.
Cheng
,
C.-H.
, and
Lin
,
H.-H.
, 2009, “
Numerical Analysis of Effects of Flow Channel Size on Reactant Transport in a Proton Exchange Membrane Fuel Cell Stack
,”
J. Power Sources
,
194
, pp.
349
359
.
17.
Hensel
,
J. P.
,
Gemmen
,
R. S.
,
Thornton
,
J. D.
,
Vipperman
,
J. S.
,
Clark
,
W. W.
, and
Bucci
,
B. A.
, 2007, “
Effects of Cell-to-Cell Fuel Mal-Distribution on Fuel Cell Performance and a Means to Reduce Mal-Distribution Using MEMS Micro-Valves
,”
J. Power Sources
,
164
, pp.
115
125
.
18.
Ahn
,
S.-Y.
,
Shin
,
S.-J.
,
Ha
,
H.-Y.
,
Hong
,
S.-A.
,
Lee
,
Y.-C.
,
Lim
,
T. W.
, and
Oh
,
I.-H.
, 2002, “
Performance and Lifetime Analysis of the kW-Class PEMFC Stack
,”
J. Power Sources
,
106
, pp.
295
303
.
19.
Scholta
,
J.
,
Berg
,
N.
,
Wilde
,
P.
,
Jörissen
,
L.
, and
Garche
,
J.
, 2004, “
Development and Performance of a 10 kW PEMFC Stack
,”
J. Power Sources
,
127
, pp.
206
212
.
20.
Yang
,
T.
, and
Shi
,
P.-F.
, 2008, “
A Preliminary Study of a Six-Cell Stack With Dead-End Anode and Open-Slits Cathode
,”
Int. J. Hydrogen Energy
,
33
, pp.
2795
2801
.
21.
Kin
,
S.
, and
Hong
,
I.
, 2008, “
Effects of Humidity and Temperature on a Proton Exchange Membrane Fuel Cell (PEMFC) Stack
,”
J. Ind. Eng. Chem.
,
14
, pp.
357
364
.
22.
Hu
,
M.-G.
,
Sui
,
S.
,
Zhu
,
X.-J.
,
Yu
,
Q.-C.
,
Cao
,
G.-Y.
,
Hong
,
X.-Y.
, and
Tu
,
H.-Y.
, 2006, “
A 10 kW Class PEM Fuel Cell Stack Based on the Catalyst-Coated Membrane (CCM) Method
,”
Int. J. Hydrogen Energy
,
31
, pp.
1010
1018
.
23.
Corbo
,
P.
,
Migliardini
,
F.
, and
Veneri
,
O.
, 2009, “
Dynamic Behavior of Hydrogen Fuel Cells for Automotive Application
,”
Renewable Energy
,
34
(
8
), pp.
1955
1961
.
24.
Moçotéguy
,
P.
,
Ludwig
,
B.
,
Scholta
,
J.
,
Barrera
,
R.
, and
Ginocchio
,
S.
, 2009, “
Long Term Testing in Continuous Mode of HT-PEMFC Based H3PO4/PBI Celtec-P MEAs for µ-CHP Applications
,”
Fuel Cells
,
4
, pp.
325
348
.
25.
Squadrito
,
G.
,
Barbera
,
O.
,
Giacoppo
,
G.
,
Urbani
,
F.
, and
Passalacqua
,
E.
, 2007, “
Polymer Electrolyte Fuel Cell Stacks at CNR-ITAE: State of the Art
,”
J. Fuel Cell Sci. Technol.
,
4
, pp.
350
356
.
26.
Sinha
,
P. K.
,
Wang
,
C.-Y.
, and
Beuscher
,
U.
, 2007, “
Transport Phenomena in Elevated Temperature PEM Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
1
), pp.
B106
B116
.
27.
Wang
,
Y.
, and
Wang
,
C.-Y.
, 2006, “
A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1193
A1200
.
28.
Fluent Inc.
, 2006,
Fluent 6.3, Documentation, User’s Guide
,
Fluent Inc.
,
Lebanon, NH
.
29.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1996, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
61
, pp.
183
188
.
30.
Pasaogullari
,
U.
,
Mukherjee
,
P. P.
,
Wang
,
C.-Y.
, and
Chen
,
K. S.
, 2007, “
Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer
,”
J. Electrochem. Soc.
,
154
(
8
), pp.
B823
B834
.
31.
Mao
,
L.
, and
Wang
,
C.-Y.
, 2007, “
Analysis of Cold Start in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
2
), pp.
B139
B146
.
32.
Basu
,
S.
,
Wang
,
C.-Y.
, and
Chen
,
K. S.
, 2009, “
Phase Change in a Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
156
(
6
), pp.
B748
B756
.
33.
Sun
,
P.-T.
,
Xue
,
G.-R.
,
Wang
,
C.-Y.
, and
Xu
,
J.-C.
, 2009, “
Fast Numerical Simulation of Two Phase Transport Model in the Cathode of a Polymer Electrolyte Fuel Cell
,”
Comm. Comp. Phys.
,
6
, pp.
49
71
.
34.
Sun
,
P.-T.
,
Xue
,
G.-R.
,
Wang
,
C.-Y.
, and
Xu
,
J.-C.
, 2009, “
A Domain Decomposition Method for Two-Phase Transport Model in the Cathode of a Polymer Electrolyte Fuel Cell
,”
J. Comput. Phys.
,
228
, pp.
6016
6036
.
35.
Sun
,
P.-T.
,
Wang
,
C.-Y.
, and
Xu
,
J.-C.
, 2010. “
A Combined Finite Element-Upwind Finite Volume-Method for Liquid-Feed Direct Methanol Fuel Cell Simulations
,”
J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041010
.
You do not currently have access to this content.