Studying the performance of a direct methanol fuel cell (DMFC) is complicated by the complex interactions of kinetic and transport processes. As a result, changes in one aspect of the cell have consequences in other aspects, which are difficult to elucidate from full-cell polarization (i.e., voltage versus current) behavior. This study outlines a strategy to use current and voltage relationships from anode half-cells, cathode half-cells, and hydrogen pump coupled with methanol crossover data and a mathematical model. In this way, all the kinetic and transport processes have been quantified, and the cell voltage was deconstructed (i.e., individual voltage losses were quantified). This data analysis accounts for all of the voltage losses observed during the operation of the full cell. As expected, the anode and cathode overpotentials accounted for most of the losses (i.e., 92% on average). Also, the cathode flow rate has been shown to affect the methanol crossover by diffusion. Cells operated at constant stoichiometry or where the cathode flow rate is small can show a parabolic shape in the methanol crossover because the electroosmotic drag dominates over diffusion as the primary transport mechanism for methanol through the membrane. Decrease in the methanol crossover was observed for cells with high compression and thicker cathode electrodes. The one-dimensional model, developed previously (García et al., 2004, “Mathematical Model of a Direct Methanol Fuel Cell,” J. Fuel Cell Sci. Technol., 1(1), pp. 43–48), was improved by: (1) including methanol transport from the anode flow channel to the backing layer using a mass transfer resistance and (2) accounting for the unreacted methanol transport through the cathode. The model was able to reasonably predict the anode, cathode, full-cell polarization, and methanol crossover data for methanol concentrations between 0.05 M and 2 M at all operating currents.

References

1.
Wasmus
,
S.
, and
Kuver
,
A.
, 1999, “
Methanol Oxidation and Direct Methanol Fuel Cells: A Selective Review
,”
J. Electroanal. Chem.
,
461
(
1–2
), pp.
14
31
.
2.
Schultz
,
T.
,
Zhou
,
S.
, and
Sundmacher
,
K.
, 2001, “
Current Status of and Recent Developments in the Direct Methanol Fuel Cell
,”
Chem. Eng. Technol.
,
24
(
12
), pp.
1223
1233
.
3.
Mcgrath
,
K. M.
,
Prakash
,
G. K. S.
, and
Olah
,
G. A.
, 2004, “
Direct Methanol Fuel Cells
,”
J. Ind. Eng. Chem.
,
10
(
7
), pp.
1063
1080
.
4.
Liu
,
H. S.
,
Song
,
C. J.
,
Zhang
,
L.
,
Zhang
,
J. J.
,
Wang
,
H. J.
, and
Wilkinson
,
D. P.
, 2006, “
A Review of Anode Catalysis in the Direct Methanol Fuel Cell
,”
J. Power Sources
,
155
(
2
), pp.
95
110
.
5.
Loffler
,
M. S.
,
Natter
,
H.
,
Hempelmann
,
R.
, and
Wippermann
,
K.
, 2003, “
Preparation and Characterisation of Pt-Ru Model Electrodes for the Direct Methanol Fuel Cell
,”
Electrochim. Acta
,
48
(
20–22
), pp.
3047
3051
.
6.
Garcia
,
B. L.
,
Captain
,
B.
,
Adams
,
R. D.
,
Hungria
,
A. B.
,
Midgley
,
P. A.
,
Thomas
,
S. J. M.
, and
Weidner
,
J. W.
, 2007, “
Bimetallic Cluster Provides a Higher Activity Electrocatalyst for Methanol Oxidation
,”
J. Cluster Sci.
,
18
(
1
), pp.
121
130
.
7.
Du
,
H. D.
,
Li
,
B. H.
,
Kang
,
F. Y.
,
Fu
,
R. W.
, and
Zeng
,
Y. Q.
, 2007, “
Carbon Aerogel Supported Pt-Ru Catalysts for Using as the Anode of Direct Methanol Fuel Cells
,”
Carbon
,
45
(
2
), pp.
429
435
.
8.
Garcia
,
B. L.
,
Fuentes
,
R.
, and
Weidner
,
J. W.
, 2007, “
Low-Temperature Synthesis of a Ptru/Nb0.1ti0.9o2 Electrocatalyst for Methanol Oxidation
,”
Electrochem. Solid-State Lett.
,
10
(
7
), pp.
B108
B110
.
9.
Zainoodin
,
A. M.
,
Kamarudin
,
S. K.
, and
Daud
,
W. R. W.
, 2010, “
Electrode in Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4606
4621
.
10.
Kim
,
M. S.
,
Fang
,
B.
,
Chaudhari
,
N. K.
,
Song
,
M.
,
Bae
,
T. S.
, and
Yu
,
J. S.
, 2010, “
A Highly Efficient Synthesis Approach of Supported Pt-Ru Catalyst for Direct Methanol Fuel Cell
,”
Electrochim. Acta
,
55
(
15
), pp.
4543
4550
.
11.
Daimon
,
H.
,
Onodera
,
T.
,
Nakagawa
,
T.
,
Nitani
,
H.
, and
Yayamoto
,
T. A.
, 2010, “
Methanol Oxidation Activity of Nanosized Ptru Catalysts and Their Microstructures
,”
J. Nanoelectron. Optoelectron.
,
5
(
2
), pp.
120
124
.
12.
Arico
,
A. S.
,
Antonucci
,
P. L.
,
Modica
,
E.
,
Baglio
,
V.
,
Kim
,
H.
, and
Antonucci
,
V.
, 2002, “
Effect of Pt-Ru Alloy Composition on High-Temperature Methanol Electro-Oxidation
,”
Electrochim. Acta
,
47
(
22–23
), pp.
3723
3732
.
13.
Dickinson
,
A. J.
,
Carrette
,
L. P. L.
,
Collins
,
J. A.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
, 2004, “
Performance of Methanol Oxidation Catalysts With Varying Pt: Ru Ratio as a Function of Temperature
,”
J. Appl. Electrochem.
,
34
(
10
), pp.
975
980
.
14.
Serov
,
A.
, and
Kwak
,
C.
, 2009, “
Review of Non-Platinum Anode Catalysts for DMFC and PEMFC Application
,”
Appl. Catal., B
,
90
(
3–4
), pp.
313
320
.
15.
Heinzel
,
A.
, and
Barragan
,
V. M.
, 1999, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
,
84
(
1
), pp.
70
74
.
16.
Deluca
,
N. W.
, and
Elabd
,
Y. A.
, 2006, “
Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review
,”
J. Polym., Sci. Part B: Polym. Phys.
,
44
(
16
), pp.
2201
2225
.
17.
Neburchilov
,
V.
,
Martin
,
J.
,
Wang
,
H. J.
, and
Zhang
,
J. J.
, 2007, “
A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
,
169
(
2
), pp.
221
238
.
18.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
(
10
), pp.
4727
4765
.
19.
Sousa
,
R.
, and
Gonzalez
,
E. R.
, 2005, “
Mathematical Modeling of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
147
(
1–2
), pp.
32
45
.
20.
Oliveira
,
V. B.
,
Falcao
,
D. S.
,
Rangel
,
C. M.
, and
Pinto
,
A.
, 2007, “
A Comparative Study of Approaches to Direct Methanol Fuel Cells Modelling
,”
Int. J. Hydrogen Energy
,
32
(
3
), pp.
415
424
.
21.
Garcia
,
B. L.
, and
Weidner
,
J. W.
, 2007, “
Review of Direct Methanol Fuel Cells
,”
Modern Aspects of Electrochemistry
,
R. E.
White
, ed.,
Springer-Verlag
,
New York
, Chap. 5.
22.
Zhao
,
T. S.
,
Xu
,
C.
,
Chen
,
R.
, and
Yang
,
W. W.
, 2009, “
Mass Transport Phenomena in Direct Methanol Fuel Cells
,”
Prog. Energy Combust. Sci.
,
35
(
3
), pp.
275
292
.
23.
Wang
,
Z. H.
, and
Wang
,
C. Y.
, 2003, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
150
(
4
), pp.
A508
A519
.
24.
Argyropoulos
,
P.
,
Scott
,
K.
,
Shukla
,
A. K.
, and
Jackson
,
C.
, 2003, “
A Semi-Empirical Model of the Direct Methanol Fuel Cell Performance—Part I. Model Development and Verification
,”
J. Power Sources
,
123
(
2
), pp.
190
199
.
25.
Guo
,
H.
, and
Ma
,
C.
, 2004, “
2D Analytical Model of a Direct Methanol Fuel Cell
,”
Electrochem. Commun.
,
6
, pp.
306
312
.
26.
Miao
,
Z.
,
He
,
Y. L.
,
Li
,
X. L.
, and
Zou
,
J. Q.
, 2008, “
A Two-Dimensional Two-Phase Mass Transport Model for Direct Methanol Fuel Cells Adopting a Modified Agglomerate Approach
,”
J. Power Sources
,
185
(
2
), pp.
1233
1246
.
27.
Yan
,
T. Z.
, and
Jen
,
T. C.
, 2008, “
Two-Phase Flow Modeling of Liquid-Feed Direct Methanol Fuel Cell
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1192
1204
.
28.
He
,
Y. L.
,
Li
,
X. L.
,
Miao
,
Z.
, and
Liu
,
Y. W.
, 2009, “
Two-Phase Modeling of Mass Transfer Characteristics of a Direct Methanol Fuel Cell
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1998
2008
.
29.
Zou
,
J. Q.
,
He
,
Y. L.
,
Miao
,
Z.
, and
Li
,
X. Y.
, 2010, “
Non-Isothermal Modeling of Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7206
7216
.
30.
Baxter
,
S. F.
,
Battaglia
,
V. S.
, and
White
,
R. E.
, 1999, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
437
447
.
31.
Shivhare
,
M. R.
,
Jackson
,
C. L.
,
Scott
,
K.
, and
Martin
,
E. B.
, 2007, “
Simplified Model for the Direct Methanol Fuel Cell Anode
,”
J. Power Sources
,
173
(
1
), pp.
240
248
.
32.
Casalegno
,
A.
, and
Marchesi
,
R.
, 2008, “
DMFC Anode Polarization: Experimental Analysis and Model Validation
,”
J. Power Sources
,
175
(
1
), pp.
372
382
.
33.
Eccarius
,
S.
,
García
,
B. L.
,
Hebling
,
C.
, and
Weidner
,
J. W.
, 2008, “
Experimental Validation of a Methanol Crossover Model in DMFC Applications
,”
J. Power Sources
,
179
, pp.
723
733
.
34.
Yin
,
K. M.
, 2008, “
A Theoretical Model of the Membrane Electrode Assembly of Liquid Feed Direct Methanol Fuel Cell With Consideration of Water and Methanol Crossover
,”
J. Power Sources
,
179
(
2
), pp.
700
710
.
35.
Casalegno
,
A.
, and
Marchesi
,
R.
, 2008, “
DMFC Performance and Methanol Cross-Over: Experimental Analysis and Model Validation
,”
J. Power Sources
,
185
(
1
), pp.
318
330
.
36.
Kareemulla
,
D.
, and
Jayanti
,
S.
, 2009, “
Comprehensive One-Dimensional, Semi-Analytical, Mathematical Model for Liquid-Feed Polymer Electrolyte Membrane Direct Methanol Fuel Cells
,”
J. Power Sources
,
188
(
2
), pp.
367
378
.
37.
Kulikovsky
,
A. A.
, 2005, “
On the Nature of Mixed Potential in a DMFC
,”
J. Electrochem. Soc.
,
152
(
6
), pp.
A1121
A1127
.
38.
Chen
,
C. H.
, and
Yeh
,
T. K.
, 2006, “
A Mathematical Model for Simulating Methanol Permeation and the Mixed Potential Effect in a Direct Methanol Fuel Cell
,”
J. Power Sources
,
160
(
2
), pp.
1131
1141
.
39.
Liu
,
F. Q.
, and
Wang
,
C. Y.
, 2007, “
Mixed Potential in a Direct Methanol Fuel Cell — Modeling and Experiments
,”
J. Electrochem. Soc.
,
154
(
6
), pp.
B514
B522
.
40.
Meyers
,
J. P.
, and
Newman
,
J.
, 2002, “
Simulation of the Direct Methanol Fuel Cell—II. Modeling and Data Analysis of Transport and Kinetic Phenomena
,”
J. Electrochem. Soc.
,
149
(
6
), pp.
A718
A728
.
41.
García
,
B. L.
,
Sethuraman
,
V. A.
,
Weidner
,
J. W.
,
White
,
R. E.
, and
Dougal
,
R.
, 2004, “
Mathematical Model of a Direct Methanol Fuel Cell
,”
J. Fuel Cell Sci. Technol.
,
1
(
1
), pp.
43
48
.
42.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
, 2004,
Electrochemical Systems
,
John Wiley and Sons, Inc.
,
New Jersey
.
43.
Wilson
,
M. S.
, 1993, U.S. Patent No. 5,211,984.
44.
Parthasarathy
,
A.
,
Srinivasan
,
S.
,
Appleby
,
A. J.
, and
Martin
,
C. R.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface—A Microelectrode Investigation
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2530
2537
.
45.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
, 1997, “
Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
65
(
1–2
), pp.
159
171
.
46.
Ren
,
X. M.
,
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 2000, “
Methanol Transport Through Nafion Membranes–Electro-Osmotic Drag Effects on Potential Step Measurements
,”
J. Electrochem. Soc.
,
147
(
2
), pp.
466
474
.
47.
Dohle
,
H.
,
Divisek
,
J.
,
Merggel
,
J.
,
Oetjen
,
H. F.
,
Zingler
,
C.
, and
Stolten
,
D.
, 2002, “
Recent Developments of the Measurement of the Methanol Permeation in a Direct Methanol Fuel Cell
,”
J. Power Sources
,
105
(
2
), pp.
274
282
.
48.
Drake
,
J. A.
,
Wilson
,
W.
, and
Killeen
,
K.
, 2004, “
Evaluation of the Experimental Model for Methanol Crossover in DMFCs
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A413
A417
.
49.
Gogel
,
V.
,
Frey
,
T.
,
Zhu
,
Y. S.
,
Friedrich
,
K. A.
,
Jorissen
,
L.
, and
Garche
,
J.
, 2004, “
Performance and Methanol Permeation of Direct Methanol Fuel Cells: Dependence on Operating Conditions and on Electrode Structure
,”
J. Power Sources
,
127
(
1–2
), pp.
172
180
.
50.
Hikita
,
S.
,
Yamane
,
K.
, and
Nakajima
,
Y.
, 2002, “
Influence of Cell Pressure and Amount of Electrode Catalyst in MEA on Methanol Crossover of Direct Methanol Fuel Cell
,”
JSAE Rev.
,
23
(
1
), pp.
133
135
.
51.
Jiang
,
R. Z.
, and
Chu
,
D. R.
, 2004, “
Comparative Studies of Methanol Crossover and Cell Performance for a DMFC
,”
J. Electrochem. Soc.
,
151
(
1
), pp.
A69
A76
.
You do not currently have access to this content.