La0.8Sr0.2Co0.8Fe0.2O3 (LSCF) nanopowders, which are being investigated as a promising cathode material for low-temperature solid oxide fuel cells (SOFCs), were synthesized by citric acid gel combustion method. The LSCF nanopowders synthesized at 700°C are single perovskite phases and have an average particle size of less than 30 nm. In order to evaluate the use of the synthesized LSCF nanopowders as cathode material of low-temperature SOFCs, anode-supported SOFCs were fabricated from the synthesized LSCF nanopowders and tested in the conditions of humidified hydrogen for anode and oxygen for cathode. The anode-supported single cell with the LSCF cathode sintered at 700°C showed high electrical performance with the maximum power density of 771 mW cm−2 at 600°C. The results show that the synthesized LSCF nanopowders are suitable to be applied as cathode material for low-temperature SOFCs.

References

1.
Minh
,
N. Q.
, 1993, “
Ceramic Fuel Cells
,”
Journal of the American Ceramic Society
,
76
, pp.
563
588
.
2.
Tsai
,
T.
, and
Barnett
,
S.A.
, 1997, “
Effect of LSM-YSZ Cathode on Thin-Electrolyte Solid Oxide Fuel Cell Performance
,”
Solid State Ionics
,
93
, pp.
207
217
.
3.
Colomer
,
M. T.
,
Steele
,
B. C. H.
, and
Kilner
,
J.A.
, 2002, “
Structure and Electrochemical Properties of the Sr0.8Ce0.1Fe0.7Co0.3O3-δ Perovskite as Cathode Material for ITSOFCs
,”
Solid State Ionics
,
147
, pp.
41
48
.
4.
Xin
,
X. S.
,
Lu
,
Z.
,
Huang
,
X. Q.
,
Sha
,
X. Q.
,
Zhang
,
Y. H.
, and
Su
,
W.
, 2006, “
Anode-Supported Solid Oxide Fuel Cell Based on Dense Electrolyte Membrane Fabricated by Filter-Coating
,”
Journal of Power Sources
,
159
, pp.
1158
1161
.
5.
Horita
,
T.
,
Yamaji
,
K.
,
Sakai
,
N.
,
Ishikawa
,
M.
,
Yokokawa
,
H.
,
Kawada
,
T.
, and
Kato
,
T.
, 1998, “
Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3-x/Yttria-Stabilized Zirconia Interface by Secondary-Ion Mass Spectrometry
,”
Journal of the Electrochemical Society
,
145
, pp.
3196
3202
.
6.
Kim
,
W. H.
,
Song
,
H. S.
,
Moon
,
J.
, and
Lee
,
H. W.
, 2006, “
Intermediate Temperature Solid Oxide Fuel Cell Using (La, Sr)(Co, Fe)O3-Based Cathodes
,”
Solid State Ionics
,
177
, pp.
3211
3216
.
7.
Qiu
,
L.
,
Ichikawa
,
T.
,
Hirano
,
A.
,
Imanishi
,
N.
, and
Takeda
,
Y.
, 2003, “
Ln1xSrxCo1yFeyO3δ (Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the Electrodes of Solid Oxide Fuel Cells
,”
Solid State Ionics
,
158
, pp.
55
65
.
8.
Tai
,
L. W.
,
Nasrallah
,
M. M.
,
Anderson
,
H.
,
Sparlin
,
D.
, and
Sehlin
,
S.
, 1995, “
Structure and Electrical Properties of La1xSrxCo1yFeyO3. Part 2. The System La1xSrxCo0.2Fe0.8O3
,”
Solid State Ionics
,
76
, pp.
273
283
.
9.
Jiang
,
S.P.
, 2002, “
A Comparison of O2 Reduction Reactions on Porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 Electrodes
,”
Solid State Ionics
,
146
, pp.
1
22
.
10.
Liu
,
J. B.
,
Co
,
A. C.
,
Paulson
,
S.
, and
Birss
,
V.I.
, 2006, “
Oxygen Reduction at Sol-Gel Derived La0.8Sr0.2Co0.8Fe0.2O3 Cathodes
,”
Solid State Ionics
,
177
, pp.
377
387
.
11.
Lei
,
Z.
,
Zhu
,
Q. S.
, and
Zhao
,
L.
, 2006, “
Low Temperature Processing of Interlayer-Free La0.6Sr0.4Co0.2Fe0.8O3δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
Journal of Power Sources
,
161
, pp.
1169
1175
.
12.
Leng
,
Y. J.
,
Chan
,
S. H.
, and
Liu
,
Q.L.
, 2008, “
Development of LSCF–GDC Composite Cathodes for Low-Temperature Solid Oxide Fuel Cells With Thin Film GDC Electrolyte
,”
International Journal of Hydrogen Energy
,
33
, pp.
3808
3817
.
13.
Blennow
,
P.
,
Hansen
,
K. K.
,
Wallenberg
,
L. R.
, and
Mogensen
,
M.
, 2007, “
Synthesis of Nb-Doped SrTiO3 by a Modified Glycine-Nitrate Process
,”
Journal of the European Ceramic Society
,
27
, pp.
3609
3612
.
14.
Bevilacqua
,
M.
,
Montini
,
T.
,
Tavagnacco
,
C.
,
Vicario
,
G.
,
Fornasiero
,
P.
, and
Graziani
,
M.
, 2006, “
Influence of Synthesis Route on Morphology and Electrical Properties of LaNi0.6Fe0.4O3
,”
Solid State Ionics
,
177
, pp.
2957
2965
.
15.
de Florio
,
D.Z.
,
Muccillo
,
R.
,
Esposito
,
V.
,
Bartolomeo
,
E. D.
, and
Traversa
,
E.
, 2005, “
Preparation and Electrochemical Characterization of Perovskite/YSZ Ceramic Films
,”
Journal of the Electrochemical Society
,
152
, pp.
A88
A92
.
16.
Chien
,
A. T.
,
Speck
,
J. S.
,
Lange
,
F. F.
,
Daykin
,
A. C.
, and
Levi
,
C.G.
, 1995, “
Low Temperature/Low Pressure Hydrothermal Synthesis of Barium Titanate: Powder and Heteroepitaxial Thin Films
,”
Journal of Material Research
,
10
, pp.
1784
1789
.
17.
Wang
,
H. M.
,
Simmonds
,
M. C.
,
Huang
,
Y. Z.
, and
Rodenburg
,
J.,M.
, 2003, “
Synthesis of Nanosize Powders and Thin Films of Yb-Doped YAG by Sol-Gel Methods
,”
Chemical Materials
,
15
, pp.
3474
3480
.
18.
Mali
,
A.
, and
Ataie
,
A.
, 2005, “
Structural Characterization of Nano-Crystalline BaFe12O19 Powders Synthesized by Sol-Gel Combustion Route
,”
Scripta Materials
,
53
, pp.
1065
1070
.
19.
Ding
,
C. S.
,
Lin
,
H. F.
,
Sato
,
K.
,
Amezawa
,
K.
,
Kawada
,
T.
,
Mizusaki
,
J.
, and
Hashida
,
T.
, 2010, “
Effect of Thickness of Gd0.1Ce0.9O1.95 Electrolyte Films on Electrical Performance of Anode-Supported Solid Oxide Fuel Cells
,”
Journal of Power Sources
,
195
, pp.
5487
5492
.
You do not currently have access to this content.