A series of six-membered sulfonated poly(imide-siloxane)s (SPIs) was synthesized using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), aminopropyl-terminated polydimethylsiloxane (PDMS) 2,2-benzidinedisulfonic acid (BDSA), as the sulfonation target diamine groups, and various nonsulfonated diamine monomers behaving as bridging groups. The structure-property relationship of SPI-SXx membranes is discussed in detail according to the chemical structure of the various nonsulfonated diamines of the SPI-SXx membranes from the viewpoints of proton conductivity, ion exchange capacity (IEC), and membrane properties (water uptake and membrane swelling) at equal PDMS content SPI-SXx. The PDMS was introduced to enhance the proton conductivity and water uptake attributed from the high flexibility of the siloxane segments. The conductivity and water uptake of angled SPI-SXm and oxydianiline-based SPI-SX membranes (SPI-SXO) are greater than those prepared from diaminodiphenylmethane-based SPI-SX membranes (SPI-SXD) at a given IEC. These differences resulted from the increased number of entanglements of the SPI-SXx membrane. The SPI-SXD showed almost isotropically dimensional changes with the increase in water uptake, and the volume were slightly smaller than those estimated from the additivity rule. Free volume in the SPI-SXx increased with the increase in bulky irregular packing in nonsulfonated segments, which augmented the water uptake and, in turn, the conductivity of the polymer. With the increase in temperature, conductivity increased more rapidly in SPI-SXx than in Nafion 117. Microscopic analyses revealed that these smaller (<10nm) and well-dispersed hydrophilic domains contribute to better proton conducting properties. The new sulfonated poly(imide-siloxane)s have proved to be a possible candidate as the polymer electrolyte membrane for polymer electrolyte fuel cells (PEFCs) and direct methanol fuel cells (DMFCs).

1.
Carratte
,
L.
,
Friedlich
,
K. A.
, and
Stimming
,
U.
, 2001, “
Fuel Cells Fundamentals and Applications
,”
Fuel Cells
0532-7822,
1
, pp.
5
35
.
2.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
3.
Hickner
,
M.
,
Ghassemi
,
H.
,
Kim
,
Y. S.
,
Einsla
,
B. R.
, and
McGrath
,
J. E.
, 2004, “
Alternative Polymer Systems for Proton Exchange Membranes(PEMs)
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4587
4612
.
4.
Heinzel
,
A.
, and
Barragan
,
V. M.
, 1999, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
84
, pp.
70
74
.
5.
Silva
,
R. F.
,
Passerini
,
S.
, and
Pozio
,
A.
, 2005, “
Solution-Cast Nafion/Montmorillonite Composite Membrane With Low Methanol Permeability
,”
Electrochim. Acta
0013-4686,
50
(
13
), pp.
2639
2645
.
6.
Dimitrova
,
P.
, 2002, “
Modified Nafion-Based Membranes for Use in Direct Methanol Fuel Cells
,”
Solid State Ionics
0167-2738,
150
, pp.
115
122
.
7.
Antonucci
,
P. L.
,
Arico
,
A. S.
,
Cretı
,
P.
,
Ramunni
,
E.
, and
Antonucci
,
V.
, 1999, “
Investigation of a Direct Methanol Fuel Cell Based on a Composite Nafion-Silica Electrolyte for High Temperature Operation
,”
Solid State Ionics
0167-2738,
125
, pp.
431
437
.
8.
Ma
,
Z. Q.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 2003, “
A Palladium-Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
0376-7388,
215
, pp.
327
336
.
9.
Ponce
,
M. L.
,
Prado
,
L.
,
Ruffmann
,
B.
,
Richau
,
K.
, and
Nunes
,
S. P.
, 2003, “
Reduction of Methanol Permeability in Polyetherketone–Heteropolyacid Membranes
,”
J. Membr. Sci.
0376-7388,
217
, pp.
5
15
.
10.
Manea
,
C.
, and
Mulder
,
M.
, 2002, “
Characterization of Polymer Blends of Polyethersulfone/Sulfonated Polysulfone and Polyethersulfone/Sulfonated Polyetheretherketone for Direct Methanol Fuel Cell Applications
,”
J. Membr. Sci.
0376-7388,
206
, pp.
443
453
.
11.
Jörissen
,
L.
,
Gogel
,
V.
,
Kerres
,
J.
, and
Garche
,
J.
, 2002, “
New Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
267
273
.
12.
Chang
,
H. Y.
, and
Lin
,
C. W.
, 2003, “
Proton Conducting Membranes Based on PEG/SiO2 Nanocomposites for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
0376-7388,
218
, pp.
295
306
.
13.
Faure
,
S.
,
Cornet
,
N.
,
Gebel
,
G.
,
Mercier
,
R.
,
Pineri
,
M.
, and
Sillion
,
B.
, 1997,
Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems
,
O.
Savadogo
and
P. R.
Roberge
, eds., p.
818
.
14.
Vallejo
,
E.
,
Porucelly
,
G.
,
Gavach
,
C.
,
Mercier
,
R.
, and
Pineri
,
M.
, 1999, “
Sulfonated Polyimides Proton Conductor Exchange Membranes. Physicochemical Properties and Separation H+/Mz+ by Electrodialysis Comparison With a Perfluorosulfonic Membrane
,”
J. Membr. Sci.
0376-7388,
160
, pp.
127
137
.
15.
Cornet
,
N.
,
Diat
,
O.
,
Gebel
,
G.
,
Jousse
,
F.
,
Marsacq
,
D.
,
Mercier
,
R.
, and
Pineri
,
M.
, 2000, “
Sulfonated Polyimide Membranes: A New Type of Ion-Conducting Membrane for Electrochemical Applications
,”
J. New Mater. Electrochem. Syst.
1480-2422,
3
, pp.
33
42
.
16.
Genies
,
C.
,
Mercier
,
R.
,
Sillion
,
B.
,
Cornet
,
N.
,
Gebel
,
G.
, and
Pineri
,
M.
, 2001, “
Soluble Sulfonated Naphtalenic Polyimides as Materials for Proton Exchange Membranes
,”
Polymer
0032-3861,
42
, pp.
359
373
.
17.
Besse
,
S.
,
Capron
,
P.
,
Diat
,
O.
,
Gebel
,
G.
,
Jousse
,
F.
,
Marsacq
,
D.
,
Pineri
,
M.
,
Marestin
,
C.
, and
Mercier
,
R.
, 2002, “
Sulfonated Polyimides for Fuel Cell Electrode Membrane Assemblies (EMA)
,”
J. New Mater. Electrochem. Syst.
1480-2422,
5
, pp.
109
112
.
18.
Watari
,
T.
,
Fang
,
J.
,
Tanaka
,
K.
,
Kita
,
H.
,
Okamoto
,
K. I.
, and
Hirano
,
T.
, 2004, “
Synthesis, Water Stability and Proton Conductivity of Novel Sulfonated Polyimides From 4,4′-Bis(4-Aminophenoxy)biphenyl-3,3′-Disulfonic Acid
,”
J. Membr. Sci.
0376-7388,
230
, pp.
111
120
.
19.
Zou
,
L.
, and
Anthamatten
,
M.
, 2007, “
Synthesis and Characterization of Polyimide-Polysiloxane Segmented Copolymers for Fuel Cell Applications
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
45
, pp.
3747
3758
.
20.
Lee
,
C.
,
Sundar
,
S.
,
Kwon
,
J.
, and
Han
,
H.
, 2004, “
Structure-Property Correlations of Sulfonated Polyimides. I. Effect of Bridging Groups on Membrane Properties
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
42
, pp.
3612
3620
.
21.
Lee
,
C. H.
, and
Wang
,
Y. Z.
, 2008, “
Syntheis and Characterization of Epoxy-Based Semi-Interpenetrating Polymer Networks Sulfonated Polyimides Proton-Exchange Membranes for Direct Methanol Fuel Cell Applications
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
46
, pp.
2262
2276
.
22.
Eikerling
,
M.
,
Kornyshev
,
A. A.
,
Kuznetsov
,
A. M.
,
Ulstrup
,
J.
, and
Walbran
,
S.
, 2001, “
Mechanisms of Proton Conductance in Polymer Electrolyte Membranes
,”
J. Phys. Chem. B
1089-5647,
105
, pp.
3646
3662
.
23.
Kornyshev
,
A. A.
,
Kuznetsov
,
A. M.
,
Spohr
,
E.
, and
Ulstrup
,
J.
, 2003, “
Kinetics of Proton Transport in Water
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
3351
3366
.
24.
Piroux
,
F.
,
Espuche
,
E.
,
Mercier
,
R.
, and
Pineri
,
M.
, 2003, “
Water Vapour Transport Mechanism in Naphtalenic Sulfonated Polyimides
,”
J. Membr. Sci.
0376-7388,
223
, pp.
127
139
.
25.
Cornet
,
N.
,
Beaudoing
,
G.
, and
Gebel
,
G.
, 2001, “
Influence of the Structure of Sulfonated Polyimide Membranes on Transport Properties
,”
Sep. Purif. Technol.
1383-5866,
22–23
, pp.
681
687
.
26.
Asano
,
N.
,
Miyatake
,
K.
, and
Watanabe
,
M.
, 2006, “
Sulfonated Block Polyimide Copolymers as a Proton-Conductive Membrane
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
44
, pp.
2744
2748
.
27.
Asano
,
N.
,
Aoki
,
M.
,
Suzuki
,
S.
,
Miyatake
,
K.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 2006, “
Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
1762
1769
.
You do not currently have access to this content.