A novel epoxy-based semi-interpenetrating polymer networks membrane (SPIX-EP40) as the proton exchange membrane was prepared by a flexible epoxy network with sulfonated polyimide. A series of sulfonated polyamic acid (SPAA) were prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,2-benzidinedisulfonic acid (BDSA) and nonsulfonated diamines, such as 4,4-diaminodiphenyl sulfone. Solid-state C13 nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy were used to verify the synchronization of the imidization of SPAA and the crosslinking reactions of epoxy. The sulfonationity of the copolymers was regulated through a variation in the molar ratio of BDSA to diamine. These membranes owned a good thermal stability and exhibited high proton conductivity that was measured as a function of temperature. The resulting SPI0.7-EP40 and SPI0.8-EP40, at 100% relative humidity, displayed proton conductivities higher than those of Nafion® 117. The membranes displayed higher conductivities than Nafion® membranes because of owning higher activational energies and higher ion exchange capacities. An isotropic swelling phenomenon in water was found for the membrane. From the results of water uptake and the microstructure analyses using transmission electron microscopy (TEM) on different sulfonated levels, it was found that the number of water clusters in SPIX-EP40 membranes increased as the increasing water uptake and the size of water cluster were changed with the sulfonation levels. TEM confirmed the widespread and well-connected hydrophilic domains, demonstrating the presence of the favorable proton-transporting performances of the SPIX-EP40 membrane.

1.
Carratte
,
L.
,
Friedlich
,
K. A.
, and
Stimming
,
U.
, 2001, “
Fuel Cells - Fundamentals and Applications
,”
Fuel Cells
1615-6846,
1
, pp.
5
35
.
2.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
3.
Hickner
,
M.
,
Ghassemi
,
H.
,
Kim
,
Y. S.
,
Einsla
,
B. R.
, and
McGrath
,
J. E.
, 2004, “
Alternative Polymer Systems for Proton Exchange Membranes (PEMs)
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4587
4612
.
4.
Heinzel
,
A.
, and
Barragan
,
V. M.
, 1999, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
84
, pp.
70
74
.
5.
Silva
,
R. F.
,
Passerini
,
S.
, and
Pozio
,
A.
, 2005, “
Solution-Cast Nafion/Montmorillonite Composite Membrane With Low Methanol Permeability
,”
Electrochim. Acta
0013-4686,
50
(
13
), pp.
2639
2645
.
6.
Dimitrova
,
P.
, 2002, “
Modified Nafion-Based Membranes for Use in Direct Methanol Fuel Cells
,”
Solid State Ionics
0167-2738,
150
, pp.
115
122
.
7.
Antonucci
,
P. L.
,
Arico
,
A. S.
,
Cretı
,
P.
,
Ramunni
,
E.
, and
Antonucci
,
V.
, 1999, “
Investigation of a Direct Methanol Fuel Cell Based on a Composite Nafion-Silica Electrolyte for High Temperature Operation
,”
Solid State Ionics
0167-2738,
125
(
4
), pp.
431
437
.
8.
Ma
,
Z. Q.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 2003, “
A Palladium-Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
0376-7388,
215
, pp.
327
336
.
9.
Ponce
,
M. L.
,
Prado
,
L.
,
Ruffmann
,
B.
,
Richau
,
K.
, and
Nunes
,
S. P.
, 2003, “
Reduction of Methanol Permeability in Polyetherketone–Heteropolyacid Membranes
,”
J. Membr. Sci.
0376-7388,
217
(
1
), pp.
5
15
.
10.
Manea
,
C.
, and
Mulder
,
M.
, 2002, “
Characterization of Polymer Blends of Polyethersulfone/Sulfonated Polysulfone and Polyethersulfone/Sulfonated Polyetheretherketone for Direct Methanol Fuel Cell Applications
,”
J. Membr. Sci.
0376-7388,
206
(
1
), pp.
443
453
.
11.
Jörissen
,
L.
,
Gogel
,
V.
,
Kerres
,
J.
, and
Garche
,
J.
, 2002, “
New Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
267
273
.
12.
Chang
,
H. Y.
, and
Lin
,
C. W.
, 2003, “
Proton Conducting Membranes Based on PEG/SiO2 Nanocomposites for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
0376-7388,
218
, pp.
295
306
.
13.
Faure
,
S.
,
Cornet
,
N.
,
Gebel
,
G.
,
Mercier
,
R.
,
Pineri
,
M.
, and
Sillion
,
B.
, 1997,
Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems
,”
O.
Savadogo
, and
P. R.
Roberge
, eds., Jul. 6–10, Montreal, Canada, p.
818
.
14.
Vallejo
,
E.
,
Porucelly
,
G.
,
Gavach
,
C.
,
Mercier
,
R.
, and
Pineri
,
M.
, 1999, “
Sulfonated Polyimides as Proton Conductor Exchange Membranes. Physicochemical Properties and Separation H+∕Mz+ by Electrodialysis Comparison With a Perfluorosulfonic Membrane
,”
J. Membr. Sci.
0376-7388,
160
, pp.
127
137
.
15.
Cornet
,
N.
,
Diat
,
O.
,
Gebel
,
G.
,
Jousse
,
F.
,
Marsacq
,
D.
,
Mercier
,
R.
, and
Pineri
,
M.
, 2000, “
Sulfonated Polyimide Membranes: A New Type of Ion-Conducting Membrane for Electrochemical Applications
,”
J. New Mater. Electrochem. Syst.
1480-2422,
3
, pp.
33
42
.
16.
Genies
,
C.
,
Mercier
,
R.
,
Sillion
,
B.
,
Cornet
,
N.
,
Gebel
,
G.
, and
Pineri
,
M.
, 2001, “
Soluble Sulfonated Naphthalenic Polyimides as Materials for Proton Exchange Membranes
,”
Polymer
0032-3861,
42
, pp.
359
373
.
17.
Besse
,
S.
,
Capron
,
P.
,
Diat
,
O.
,
Gebel
,
G.
,
Jousse
,
F.
,
Marsacq
,
D.
,
Pineri
,
M.
,
Marestin
,
C.
, and
Mercier
,
R.
, 2002, “
Sulfonated Polyimides for Fuel Cell Electrode Membrane Assemblies (EMA)
,”
J. New Mater. Electrochem. Syst.
1480-2422,
5
, pp.
109
112
.
18.
Eikerling
,
M.
,
Kornyshev
,
A. A.
,
Kuznetsov
,
A. M.
,
Ulstrup
,
J.
, and
Walbran
,
S.
, 2001, “
Mechanisms of Proton Conductance in Polymer Electrolyte Membranes
,”
J. Phys. Chem. B
1089-5647,
105
, pp.
3646
3662
.
19.
Kornyshev
,
A. A.
,
Kuznetsov
,
A. M.
,
Spohr
,
E.
, and
Ulstrup
,
J.
, 2003, “
Kinetics of Proton Transport in Water
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
3351
3366
.
20.
Eisenberg
,
A.
, 1970, “
Clustering of Ions in Organic Polymers. A Theoretical Approach
,”
Macromolecules
0024-9297,
3
, pp.
147
154
.
21.
Asano
,
N.
,
Miyatake
,
K.
, and
Watanabe
,
M.
, 2006, “
Sulfonated Block Polyimide Copolymers as a Proton-Conductive Membrane
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
44
, pp.
2744
2748
.
22.
Asano
,
N.
,
Aoki
,
M.
,
Suzuki
,
S.
,
Miyatake
,
K.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 2006, “
Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
1762
1769
.
23.
Lee
,
C. H.
, and
Wang
,
Y. Z.
, 2008, “
Synthesis and Characterization of Epoxy-Based Semi-Interpenetrating Polymer Networks Sulfonated Polyimides Proton-Exchange Membranes for Direct Methanol Fuel Cell Applications
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
46
, pp.
2262
2276
.
You do not currently have access to this content.