The use of pressurized blister specimens to characterize the biaxial strength and durability of proton exchange membranes (PEMs) is proposed, simulating the biaxial stress states that are induced within constrained membranes of operating PEM fuel cells. PEM fuel cell stacks consist of layered structures containing the catalyzed PEMs that are surrounded by gas diffusion media and clamped between bipolar plates. The surfaces of the bipolar plates are typically grooved with flow channels to facilitate distribution of the reactant gases and water by-product. The channels are often on the order of a few millimeters across, leaving the sandwiched layers tightly constrained by the remaining lands of the bipolar plates, preventing in-plane strains. The hydrophilic PEMs expand and contract significantly as the internal humidity, and to a lesser extent, temperature varies during fuel cell operation. These dimensional changes induce a significant biaxial stress state within the confined membranes that are believed to contribute to pinhole formation and membrane failure. Pressurized blister tests offer a number of advantages for evaluating the biaxial strength to bursting or to detectable leaking. Results are presented for samples of three commercial membranes that were tested at 80°C and subjected to a pressure that was ramped to burst. The bursting pressures exhibit significant time dependence that is consistent with failure of viscoelastic materials. Rupture stresses, estimated with the classic Hencky’s solution for pressurized membranes in conjunction with a quasielastic estimation, are shown to be quite consistent for a range of blister diameters tested. The technique shows considerable promise not only for measuring biaxial burst strength but also for measuring constitutive properties, creep to rupture, and cyclic fatigue damage. Because the tests are easily amenable to leak detection, pressurized blister tests offer the potential for characterizing localized damage events that would not be detectable in more commonly used uniaxial strength tests. As such, this specimen configuration is expected to become a useful tool in characterizing mechanical integrity of proton exchange membranes.

1.
LaConti
,
A. B.
,
Hamdan
,
M.
, and
McDonald
,
R. C.
, 2003, “
Mechanisms of Membrane Degradation
,”
Handbook of Fuel Cells: Fundamentals, Technology and Applications
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
,
Chichester
, pp.
647
662
.
2.
Liu
,
W.
,
Ruth
,
K.
, and
Rusch
,
G.
, 2001, “
Membrane Durability in PEM Fuel Cells
,”
J. New Mater. Electrochem. Syst.
1480-2422,
4
(
4
), pp.
227
232
.
3.
Huang
,
X.
,
Solasi
,
R.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsnider
,
K.
,
Condit
,
D.
,
Burlatsky
,
S.
, and
Madden
,
T.
, 2006, “
Mechanical Endurance of Polymer Electrolyte Membrane and Pem Fuel Cell Durability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
(
16
), pp.
2346
2357
.
4.
Tang
,
Y.
,
Santare
,
M H.
.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
Stresses in Proton Exchange Membranes Due to Hygro-Hhermal Loading
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
2
), pp.
119
124
.
5.
Liu
,
D.
,
Kyriakides
,
S.
,
Case
,
S. W.
,
Lesko
,
J. J.
,
Li
,
Y.
, and
McGrath
,
J. E.
, 2006, “
Tensile Behavior of Nafion and Sulfonated Poly(Arylene Ether Sulfone) Copolymer Membranes and its Morphological Correlations
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
(
10
), pp.
1453
1465
.
6.
Kundu
,
S.
,
Leonardo
,
C. S.
,
Fowler
,
M.
, and
Grot
,
S.
, 2005, “
Mechanical Properties of Nafion (TM) Electrolyte Membranes Under Hydrated Conditions
,”
Polymer
0032-3861,
46
(
25
), pp.
11707
11715
.
7.
Bauer
,
F.
,
Denneler
,
S.
, and
Willert-Porada
,
M.
, 2005, “
Influence of Temperature and Humidity on the Mechanical Properties of Nafion (R) 117 Polymer Electrolyte Membrane
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
(
7
), pp.
786
795
.
8.
McDonald
,
R. C.
,
Mittelsteadt
,
C. K.
, and
Thompson
,
E. L.
, 2005, “
Effects of Deep Temperature Cycling on Nafion 112 Membranes and Membrane Electrode Assemblies
,”
Fuel Cells
1615-6846,
4
(
3
), pp.
208
213
.
9.
Reifsnider
,
K. L.
, 1986, “
The Critical Element Model—A Modeling Philosophy
,”
Eng. Fract. Mech.
0013-7944,
25
(
5–6
), pp.
739
749
.
10.
Lai
,
Y. H.
-
,
Mittelsteadt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
, 2005, “
Viscoelastic Stress Model and Mechanical Characterization of Perfluorosulfonic Acid (PFSA) Polymer Electrolyte Membranes
,”
ASME Fuel Cell 2005
,
ASME
,
Ypsilanti, MI
.
11.
Gent
,
A. N.
, and
Lewandowski
,
L. H.
, 1987, “
Blow-Off Pressures for Adhering Layers
,”
J. Appl. Polym. Sci.
0021-8995,
33
(
5
), pp.
1567
1577
.
12.
Reifsnider
,
K.
,
Huang
,
X.
,
Ju
,
G.
,
Feshler
,
M.
, and
An
,
K.
, 2005, “
Mechanics of Composite Materials in Fuel Cell Systems
,”
Mech. Compos. Mater.
0191-5665,
41
(
1
), pp.
1
8
.
13.
Khoo
,
H. S.
,
Liu
,
K.
, and
Tseng
,
F. G.
, 2005, “
Characterization of the Mechanical Properties of Microscale Elastomeric Membranes
,”
Meas. Sci. Technol.
0957-0233,
16
(
3
), pp.
653
658
.
14.
Guo
,
S.
,
Wan
,
K. T.
, and
Dillard
,
D. A.
, 2005, “
A Bending-to-Stretching Analysis of the Blister Test in the Presence of Tensile Residual Stress
,”
Int. J. Solids Struct.
0020-7683,
42
(
9–10
), pp.
2771
2784
.
15.
Wan
,
K. T.
,
Guo
,
S.
, and
Dillard
,
D. A.
, 2003, “
A Theoretical and Numerical Study of a Thin Clamped Circular Film Under an External Load in the Presence of a Tensile Residual Stress
,”
Thin Solid Films
0040-6090,
425
(
1–2
), pp.
150
162
.
16.
Roy
,
S.
,
Zorman
,
C.
,
Mehregany
,
M.
,
DeAnna
,
R.
, and
Deeb
,
C.
, 2006, “
The Mechanical Properties of Polycrystalline 3C-SiC Films Grown on Polysilicon Substrates by Atmospheric Pressure Chemical-vapor Deposition
,”
J. Appl. Phys.
0021-8979,
99
(
4
), p.
044108
.
17.
Hencky
,
H.
, 1915, “
Uber Den Spannungszustand in Kreisrunden Platten Mit Verschwindender Biegungssteiflgkeit
,”
Zeitschrift fur Mathematik und Physik
,
63
, pp.
311
317
.
18.
Hohlfelder
,
R. J.
, 1999,
Bulge and Blister Testing of Thin Films and Their Interfaces
,
Stanford University
,
Stanford
.
19.
Li
,
Y.
,
Grohs
,
J. R.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
-
, and
Gittleman
,
C. S.
, “
A Nonlinear Analysis of Proton Exchange Membranes in Pressure-Loaded Blister Specimens
,” unpublished.
20.
Murff
,
J. D.
, and
Schapery
,
R. A.
, 1986, “
Time Dependence of Axial Pile Response
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
10
(
4
), pp.
449
458
.
21.
Patankar
,
K. A.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
-
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, 2008, “
Hygrothermal Characterization of the Viscoelastic Properties of Gore-Select® 57 Proton Exchange Membrane
,”
Mech. Time-Depend. Mater.
1385-2000,
12
(
3
), pp.
221
236
.
22.
Patankar
,
K. A.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
-
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, 2008, “
Hygrothermal Characterization of the Viscoelastic Properties of Nafion® NRE-211 Proton Exchange Membrane
,”
J. Membr. Sci.
, submitted.
23.
Grohs
,
J. R.
,
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S W.
.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
-
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, 2008, “
Use of Digital Image Correlation Techniques to Characterize Proton Exchange Membranes Tested as Pressurized Blister Specimens
,” in preparation.
24.
Li
,
Y.
,
Grohs
,
J. R.
,
Dillard
,
D. A.
,
Case
,
S W.
.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
-
,
Gittleman
,
C. S.
, and
Miller
,
D. P.
, 2008, “
Fatigue and Creep to Leak Tests of Proton Exchange Membranes Using Pressure-Loaded Blister Tests
,”
Mater. Sci. Eng., A
, in preparation.
25.
Lai
,
Y.-H.
, and
Dillard
,
D. A.
, 2009, “
Mechanical Durability Characterization and Modeling of Ionomeric Membranes
,”
Handbook of Fuel Cells
, Vol.
5
,
W.
Vielstich
,
H. A.
Gasteiger
, and
H.
Yokokawa
, eds.,
Wiley, Chichester
,
West Sussex, UK
.
You do not currently have access to this content.