Many premature failures in proton exchange membrane (PEM) fuel cells are attributed to crossover of the reactant gas from microcracks in the membranes. The formation of these microcracks is believed to result from chemical and/or mechanical degradation of the constrained membrane during fuel cell operation. By characterizing the through-membrane leakage, we report failures resulting from crack formation in several PEMs mounted in 50cm2 fuel cell fixtures and mechanically stressed as the environment was cycled between wet and dry conditions in the absence of chemical potential. The humidity cycling tests also show that the failure from crossover leaks is delayed if membranes are subjected to smaller humidity swings. To understand the mechanical response of PEMs constrained by bipolar plates and subjected to changing humidity levels, we use Nafion® NR-111 as a model membrane and conduct numerical stress analyses to simulate the humidity cycling test. We also report the measurement of material properties required for the stress analysis—water content, coefficient of hygral expansion, and creep compliance. From the creep test results, we have found that the principle of time-temperature-humidity superposition can be applied to Nafion® NR-111 to construct a creep compliance master curve by shifting individual compliance curves with respect to temperature and water content. The stress prediction obtained using the commercial finite element program ABAQUS® agrees well with the stress measurement of Nafion® NR-111 from both tensile and relaxation tests for strains up to 8%. The stress analysis used to model the humidity cycling test shows that the membrane can develop significant residual tensile stress after humidity cycling. The result shows that the larger the humidity swing and/or the faster the hydration/dehydration rate, the higher the residual tensile stress. This result is confirmed experimentally as PEM failure is significantly delayed by decreasing the magnitude of the relative humidity cycle. Based on the current study, we also discuss potential improvements for material characterization, material state diagnostics, and a stress model for PEMs.

1.
US Department of Energy, Office of Basic Energy Sciences
, 2004,
Basic Research Needs for the Hydrogen Economy
,
US DOE
,
Washington, DC
, http://www.sc.doe.gov/bes/hydrogen.pdfhttp://www.sc.doe.gov/bes/hydrogen.pdf.
2.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cells Systems Explained
, 2nd ed.,
Wiley
,
New York
.
3.
Doyle
,
M.
, and
Rajendran
,
G.
, 2003, in
Handbook of Fuel Cells
, Vol.
3
,
W.
Vielstich
,
H. A.
Gasteiger
, and
A.
Lamm
, eds.,
Wiley
,
New York
.
5.
Uan-Zo Li
,
J. T.
, 2001, “
The Effects of Structure, Humidity and Aging on the Mechanical Properties of Polymeric Ionomers for Fuel Cell Applications
,” MS thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
6.
Liu
,
W.
,
Ruth
,
K.
, and
Rusch
,
G.
, 2001, “
Membrane Durability in PEM Fuel Cells
,”
J. New Mater. Electrochem. Syst.
1480-2422,
4
, pp.
227
232
.
7.
Mathias
,
M. F.
,
Makharia
,
R.
,
Gasteiger
,
H. A.
,
Conley
,
J. J.
,
Fuller
,
T. J.
,
Gittleman
,
C. S.
,
Kocha
,
S. S.
,
Miller
,
D. P.
,
Mittelsteadt
,
C. K.
,
Xie
,
T.
,
Van
,
S. G.
, and
Yu
,
P. T.
, 2005, “
Two Fuel Cell Cars in Every Garage
,”
Electrochem. Soc. Interface
1064-8208,
14
, pp.
24
35
.
8.
Collier
,
A.
,
Wang
,
H.
,
Yuan
,
X. Z.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
, 2006, “
Degradation of Polymer Electrolyte Membranes
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
1838
1854
.
9.
Kolde
,
J. A.
,
Bahar
,
B.
,
Wilson
,
M. S.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1995, “
Advanced Composite Polymer Electrolyte Fuel Cell Membranes
,”
Proton Conducting Membrane Fuel Cells I: Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells
,
The Electrochemical Society
,
Pennington, NJ
, 95-23, pp.
193
201
.
10.
Kusoglu
,
K.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle
,”
J. Power Sources
0378-7753,
161
(
2
), pp.
987
996
.
11.
Gittleman
,
C. S.
,
Lai
,
Y. H.
, and
Miller
,
D. P.
, 2005, “
Durability of Perfluorosulfonic Acid Membranes for PEM Fuel Cells
,” Extended Abstract in the AIChE 2005 Annual Meeting,
Cincinnati, OH
, Oct. 30–Nov. 4.
12.
Lai
,
Y.
,
Mittelsteadt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
, 2005, “
Viscoelastic Stress Model and Mechanical Characterization of Perfluorosulfonic Acid (PFSA) Polymer Electrolyte Membranes
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering and Technology
,
Ypsilanti, MI
, May 23–25.
13.
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2005, “
Stresses in Proton Exchange Membranes Due to Hydration and Dehydration Cycles
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering and Technology
,
Ypsilanti, MI
, May 23–25.
14.
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
119
124
.
15.
Tang
,
Y.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Gilbert
,
M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
An Experimental Investigation of Humidity and Temperature Effects on the Mechanical Properties of Perfluorosulfonic Acid Membrane
,”
Mater. Sci. Eng., A
0921-5093,
425
(
1–2
), pp.
297
304
.
16.
Tang
,
Y.
,
Kusoglu
,
K.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2008, “
Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and Its Simulated Performance in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
175
(
2
), pp.
817
825
.
17.
Kusoglu
,
K.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2007, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses
,”
J. Power Sources
0378-7753,
170
(
2
), pp.
345
358
.
18.
Huang
,
X.
,
Solasi
,
R.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsnider
,
K.
,
Condit
,
D.
,
Burlatsky
,
S.
, and
Madden
,
T.
, 2006, “
Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
(
16
), pp.
2346
2357
.
19.
Solasi
,
R.
,
Huang
,
X.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsnider
,
K.
, and
Condit
,
D.
, 2006, “
Mechanical Response of 3-Layered MEA During RH and Temperature Variation Based on Mechanical Properties Measured Under Controlled T and RH
,”
Proceedings of the Fourth International Conference on Fuel Cell Science, Engineering, and Technology 2006
,
Irvine, CA
, June 19–21.
20.
Solasi
,
R.
,
Zou
,
Y.
,
Huang
,
X.
,
Reifsnider
,
K.
, and
Condit
,
D.
, 2007, “
On Mechanical Behavior and In-Plane Modeling of Constrained PEM Fuel Cell Membranes Subjected to Hydration and Temperature Cycles
,”
J. Power Sources
0378-7753,
167
(
2
), pp.
366
377
.
21.
Patankar
,
K.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M. K.
,
Gittleman
,
C. S.
, and
Park
,
S.
, 2008, “
Hygrothermal Characterization of the Viscoelastic Properties of GoreSelect® 57 Proton Exchange Membrane
,”
Mech. Time-Depend. Mater.
1385-2000, in press.
22.
Patankar
,
K.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, “
Hygrothermal Characterization of the Viscoelastic Properties of Nafion® NRE 211 Proton Exchange Membrane
,”
J. Membr. Sci.
0376-7388, to be published.
23.
Dillard
,
D. A.
,
Li
,
Y.
,
Grohs
,
J.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, “
On the Use of Pressure-Loaded Blister Tests to Characterize the Strength and Durability of Proton Exchange Membranes
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X, in press.
24.
Grohs
,
J.
,
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, “
Evaluating The Time and Temperature Dependent Biaxial Strength of Gore-Select® Series 57 Proton Exchange Membrane Using a Pressure Loaded Blister Test
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X, to be published.
25.
Dillard
,
D. A.
,
Lai
,
Y. H.
,
Budinski
,
M.
, and
Gittleman
,
C. S.
, 2005, “
Tear Resistance of Proton Exchange Membranes
,”
Proceedings of FUELCELL2005
, Third International ASME Conference on Fuel Cell Science, Engineering, and Technology,
Ypsilanti, MI
, May 23–25.
26.
Li
,
Y.
,
Quincy
,
J. K.
,
Case
,
S. W.
,
Dillard
,
D. A.
,
Budinski
,
M. K.
, and
Lai
,
Y. H.
, 2006, “
Using a Knife Slitting Test to Characterize the Fracture Resistance of Proton Exchange Membranes
,”
Proceedings of FUELCELL2006
, Fourth International ASME Conference on Fuel Cell Science, Engineering, and Technology,
Irvine, CA
, June 19–21.
27.
Patankar
,
K.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
, “
Characterizing Fracture Energy of Proton Exchange Membranes (PEM) Using a Knife Slit Test
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X, to be published.
28.
Christensen
,
R. M.
, 1982,
Theory of Viscoelasticity: An Introduction
,
Academic
,
New York
.
29.
Knauss
,
W. G.
, and
Emri
,
I. J.
, 1981, “
Non-Linear Viscoelasticity Based on Free-Volume Consideration
,”
Comput. Struct.
0045-7949,
13
(
1–3
), pp.
123
128
.
30.
Park
,
S. J.
, and
Liechti
,
K. M.
, 2003, “
Rate-Dependent Large Strain Behavior of a Structural Adhesive
,”
Mech. Time-Depend. Mater.
1385-2000,
7
(
2
), pp.
143
164
.
31.
Tschoegl
,
N. W.
,
Knauss
,
W. G.
, and
Emri
,
I.
, 2002, “
Poisson’s Ratio in Linear Viscoelasticity—A Critical Review
,”
Mech. Time-Depend. Mater.
1385-2000,
6
(
1
), pp.
3
51
.
32.
Nemat-Nasser
,
S.
, and
Li
,
J. Y.
, 2000, “
Electromechanical Response Of Ionic Polymer-Metal Composites
,”
J. Appl. Phys.
0021-8979,
87
(
7
), pp.
3321
3331
.
33.
ABAQUS, 2005,
ABAQUS Analysis User’s Manual
,
HKS Inc.
34.
Kyu
,
T.
, and
Eisenberg
,
A.
, 1984, “
Underwater Stress-Relaxation Studies of Nafion (Perfluorosulfonate) Ionomer Membranes
,”
J. Polym. Sci., Polym. Symp.
0360-8905,
71
, pp.
203
219
.
35.
Majsztrik
,
P. W.
,
Satterfield
,
M. B.
,
Bocarsly
,
A. B.
, and
Benziger
,
J. B.
, 2007, “
Water Sorption, Desorption and Transport in Nafion Membranes
,”
J. Membr. Sci.
0376-7388,
301
(
1–2
), pp.
93
106
.
37.
Weber
,
A.
, and
Newman
,
J.
, 2003, “
Transport in Polymer-Electrolyte Membranes
,”
J. Electrochem. Soc.
0013-4651,
150
(
7
), pp.
A1008
A1015
.
38.
Mittelsteadt
,
C. K.
, 2003, “
Water Uptake and Conductivity of Sulfonated Ionomers: Similarities and Limitations for PEM Fuel Cells
,”
Proceedings of ACS Advances in Materials for Proton Exchange Membrane Fuel Cell Systems
,
Asilomar, Pacific Grove, CA
, Feb. 23–27.
39.
Thampan
,
T.
,
Malhotra
,
S.
,
Tang
,
H.
, and
Datta
,
R.
, 2000, “
Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
3242
3250
.
40.
Futerko
,
P.
, and
Hsing
,
I. M.
, 1999, “
Thermodynamics of Water Vapor Uptake in Perfluorosulfonic Acid Membranes
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
2049
2053
.
41.
Springer
,
T. E.
,
Zawodinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
136
, pp.
2334
2342
.
42.
Zawodzinski
,
T. A.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R. J.
,
Smith
,
V. T.
,
Springer
,
T. E.
, and
Gottesfeld
,
S. J.
, 1993, “
Water Uptake by and Transport Through Nafion® 117 Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
(
4
), pp.
1041
1047
.
43.
Morris
,
D. R.
, and
Sun
,
X.
, 1993, “
Water-Sorption and Transport Properties of Nafion 117 H
,”
J. Appl. Polym. Sci.
0021-8995,
50
(
8
), pp.
1445
1452
.
44.
Bauer
,
F.
,
Denneler
,
S.
, and
Willert-Porada
,
M.
, 2005, “
Influence of Temperature and Humidity on the Mechanical Properties of Nafion® 117 Polymer Electrolyte Membrane
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
, pp.
786
795
.
45.
Tobolsky
,
A. V.
, 1960,
Properties and Structure of Polymers
,
Wiley
,
New York
.
46.
Ye
,
X.
, and
Wang
,
C. Y.
, 2007, “
Measurement of Water Transport Properties Through Membrane Electrode Assemblies Part I: Membranes
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B676
B682
.
47.
Lai
,
Y. H.
,
Miller
,
D. P.
,
Ji
,
C.
, and
Trabold
,
T. A.
, 2004, “
Stack Compression of PEM Fuel Cells
,”
Proceedings of FUELCELL2004
, Second International ASME Conference on Fuel Cell Science, Engineering, and Technology,
Rochester, NY
, June 14–17.
You do not currently have access to this content.