To date, multiphase computational fluid dynamics models for proton exchange membrane (PEM) fuel cells failed to provide even a qualitative depiction of the fuel cell water management. This was primarily due to the inability to capture two-phase phenomena in the cathode catalyst layer and the water saturation equilibrium at the interface between the fuel cell components. A model without the cathode catalyst layer cannot capture dominant mechanisms of water transfer and cannot explain correctly the fuel cell performance. We propose a multifluid, multiphase model consisting of separate transport equations for each phase. The model accounts for gas- and liquid-phase momentam and species transport in the cathode channel, gas diffusion layer (GDL), and catalyst layer and for the current density, ionomer-phase potential, and water content in the catalyst coated membrane. The model considers water produced at cathode by (I) electrochemical reaction, (II) change of phase, and (III) parallel, competing mechanisms of water transfer between the ionomer distributed in the catalyst layer and the catalyst layer pores. Liquid water is transported in the GDL and the catalyst layer due to liquid pressure gradient and in the channel due to gravity and two-phase drag. We have developed a transport equation for the water content. The source/sink terms of the transport equation represent the parallel, competing mechanisms of water transfer between the ionomer phase and the catalyst layer pores. They are (I) sorption/desorption at nonequilibrium and (II) electro-osmotic drag by the secondary current. Another distinguishing feature of this model is the capability to capture water saturation equilibrium at channel-GDL and GDL–catalyst layer interfaces. The computational results are used to study the dynamics of water transport within and between the fuel cell components and the impact of the GDL and catalyst layer properties on the amount of water retained in the fuel cell components during operation. A new dominant mechanism of water transfer between the ionomer distributed in the catalyst layer and the catalyst layer pores is identified. The amount of water retained in GDL is determined by GDL permeability and its pore size at the interface with the channel. The amount of water retained in the cathode catalyst layer is determined by the saturation equilibrium at the interface with the GDL. Models based on the two-phase mixture model are not applicable to PEM fuel cell electrodes.

1.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
2.
You
,
L.
, and
Liu
,
H. T.
, 2002, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2277
2284
.
3.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells; II Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
0013-4651,
150
(
11
), pp.
A1510
A1517
.
4.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A399
A406
.
5.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4359
4369
.
6.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2005, “
Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
2
), pp.
A380
A390
.
7.
Sun
,
H.
,
Liu
,
H. T.
, and
Guo
,
L. J.
, 2005, “
PEM Fuel Cell Performance and Its Two-Phase Mass Transport
,”
J. Power Sources
0378-7753,
143
, pp.
125
135
.
8.
You
,
L.
, and
Liu
,
H. T.
, 2006, “
A Two-Phase Flow and Transport Model for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
155
, pp.
219
230
.
9.
Wang
,
C. Y.
, and
Beckermann
,
C.
, 1992, “
A Two-Phase Mixture Model of Liquid-Gas Flow and Heat Transfer in Capillary Porous Media. I. Formulation
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
11
), pp.
2747
2758
.
10.
Wang
,
C. Y.
, and
Cheng
,
P.
, 1996, “
A Multiphase Mixture Model for Multiphase Multicomponent Transport in Capillary Porous Media. I. Model Development
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
17
), pp.
3607
3618
.
11.
Wang
,
C. Y.
, 1997, “
A Fixed-Grid Numerical Algorithm for Two-Phase Flow and Heat Transfer in Porous Media
,”
Numer. Heat Transfer, Part B
1040-7790,
31
, pp.
85
105
.
12.
Gurau
,
V.
,
Barbir
,
F.
, and
Liu
,
H. T.
, 2000, “
An Analytical Solution of a Half-Cell Model for PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
7
), pp.
2468
2477
.
13.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1996, “
Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy
,”
J. Electrochem. Soc.
0013-4651,
143
(
2
), pp.
587
599
.
14.
Gurau
,
V.
,
Zawodzinski
,
T. A.
, and
Mann
,
J. A.
, 2006, “
Numerical Investigation of Water Transport in the PEMFC Components
,”
Proton Exchange Membrane Fuel Cells 6, ECS Transactions
,
T.
Fuller
,
C.
Block
,
T. V.
Nguyen
,
M. F.
Mathias
,
T. D.
Jarvi
,
H. A.
Gasteiger
,
V.
Ramani
,
S.
Cleghorn
,
E. M.
Stuve
, and
T.
Zawodzinski
, eds.,
The Electrochemical Society, Inc.
,
Pennington, NJ
, Vol.
3
, pp.
1095
1104
.
15.
Shimpalee
,
S.
, and
Dutta
,
S.
, 2000, “
Numerical Prediction of Temperature Distribution in PEM Fuel Cells
,”
Numer. Heat Transfer, Part A
1040-7782,
38
, pp.
111
128
.
16.
Natarajan
,
D.
, and
Nguyen
,
T. V.
, 2001, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
(
12
), pp.
A1324
A1335
.
17.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
18.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
A 3D, MultiPhase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
12
), pp.
A1589
A1598
.
19.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1990, “
Modeling Water Content Effects in Polymer Electrolyte Fuel Cells
,”
Proceedings of the Symposium on Modeling of Batteries and Fuel Cells
,
R. E.
White
,
M. W.
Verbrugge
, and
J. F.
Stockel
, eds.,
The Electrochemical Society, Inc.
,
Pennington, NJ
, PV-Vol.
91–10
, pp.
209
229
.
20.
Zawodzinski
,
T. A.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R. J.
,
Smith
,
V. T.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 1993, “
Water Uptake by and Transport Through Nafion® 117 Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
(
4
), pp.
1041
1047
.
21.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
, 1998,
Multiphase Flows With Droplets and Particles
,
CRC
,
Boca Raton
, p.
60
.
22.
Rantz
,
W. E.
, and
Marshall
,
W. R.
, 1952, “
Evaporation From Drops
,”
Chem. Eng. Prog.
0360-7275,
48
,
141
146
.
23.
1981,
ASHRAE Handbook, Fundamentals
,
ASHRAE Inc.
,
Atlanta
.
24.
Gurau
,
V.
,
Bluemle
,
M. J.
,
De Castro
,
E. S.
,
Tsou
,
Y. M.
,
Zawodzinski
,
T. A.
, and
Mann
,
J. A.
, 2007, “
Characterization of Transport Properties in Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells: 2. Absolute Permeability
,”
J. Power Sources
0378-7753,
165
, pp.
793
802
.
25.
Ishii
,
M.
, and
Zuber
,
N.
, 1979, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
0001-1541,
25
(
5
), pp.
843
855
.
26.
Leverett
,
M. C.
, 1941, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
0096-4778,
142
, pp.
152
169
.
27.
Brown
,
H. W.
, 1951,
Trans. AIME
0096-4778,
192
, pp.
67
74
.
28.
Dullien
,
F. A. L.
, 1979,
Porous Media; Fluid Transport and Pore Structure
,
Academic
,
London
, p.
22
.
29.
Adamson
,
A. W.
, and
Gast
,
A. P.
, 1997,
Physical Chemistry of Surface
,
Wiley
,
New York
, p.
20
.
30.
Hickner
,
M.
,
Grossarth
,
K.
,
Leonhart
,
D.
,
Noble
,
D.
, and
Chen
,
K.
, 2005, “
Liquid Water Droplet Instability Under Shear Flow on Porous Gas Diffusion Media for Fuel Cells
,”
2005 Conference on Advances in Materials for Proton Membrane Fuel Cell Systems
,
Asilomar, CA
.
31.
Toong
,
T.
, 1983,
Combustion Dynamics: The Dynamics of Chemically Reacting Fluids
,
McGraw-Hill
,
New York
.
32.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
, p.
521
.
33.
Zawodzinski
,
T. A.
,
Springer
,
T. E.
,
Davey
,
J.
,
Valerio
,
J.
, and
Gottesfeld
,
S.
, 1990, “
Water Transport Properties of Fuel Cell Ionomers
,”
Proceedings of the Symposium on Modeling of Batteries and Fuel Cells
,
R. E.
White
,
M. W.
Verbrugge
, and
J. F.
Stockel
, eds.,
The Electrochemical Society, Inc.
,
Pennington, NJ
, PV-Vol.
91–10
, pp.
187
196
.
34.
Zawodzinski
,
T. A.
,
Davey
,
J.
,
Valerio
,
J.
, and
Gottesfeld
,
S.
, 1995, “
The Water Content Dependence of Electro-Osmotic Drag in Proton-Conducting Polymer Electrolytes
,”
Electrochim. Acta
0013-4686,
40
(
3
), pp.
297
302
.
You do not currently have access to this content.