Abstract

A two-dimensional model of a single-channel polymer fuel cell has been developed. To achieve model validation, current mapping experiments were performed on the cathode side of a single-channel polymer electrolyte fuel cell (PEFC) of various channel widths, at different reactant flow rates and over a range of operating cell voltages. The fuel side was operated in cross-flow mode, with a high stoichiometric excess of hydrogen to ensure no limitations in anode performance as a function of position along the channel. The solution domain comprises seven regions, (two inlet channels, two diffusers, two active catalyst layers, and a membrane) and considers transport of hydrogen and water vapor in the anode and oxygen and nitrogen and water vapor in the cathode. The resulting set of coupled differential equations was solved numerically with FEMLAB®, a MATLAB®-based software. The model has been compared to data from a single-channel PEFC, and good agreement between experiment and theory was obtained.

References

1.
Brett
,
D. J. L.
,
Atkins
,
S.
,
Brandon
,
N. P.
,
Vesovic
,
V.
,
Vasileiadis
,
N.
, and
Kucernak
,
A. R.
, 2001, “
Measurement of the Current Distribution Along a Single Flow Channel of a Solid Polymer Fuel Cell
,”
Electrochem. Commun.
1388-2481,
3
(
11
), pp.
628
632
.
2.
Brett
,
D. J. L.
,
Atkins
,
S.
,
Brandon
,
N. P.
,
Vesovic
,
V.
,
Vasileiadis
,
N.
, and
Kucernak
,
A. R.
, 2003, “
Localized Impedance Measurements Along a Single Channel of a Solid Polymer Fuel Cell
,”
Electrochem. Solid-State Lett.
1099-0062,
6
(
4
), pp.
A63
A66
.
3.
Brett
,
D. J. L.
,
Atkins
,
S.
,
Brandon
,
N. P.
,
Vesovic
,
V.
,
Vasileiadis
,
N.
, and
Kucernak
,
A. R.
, 2004, “
Investigation of Reactant Transport within a Polymer Electrolyte Fuel Cell Using Localised CO Stripping Voltammetry and Adsorption Transients
,”
J. Power Sources
0378-7753,
133
(
2
), pp.
205
213
.
4.
Springer
,
T. E.
, and
Raistrick
,
I. D.
, 1989, “
Electrical-Impedance of a Pore Wall for the Flooded-Agglomerate Model of Porous Gas-Diffusion Electrodes
,”
J. Electrochem. Soc.
0013-4651,
136
(
6
), pp.
1594
1603
.
5.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
6.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modelling and Experimental Diagnostics in Polymer Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
12
), pp.
3513
3526
.
7.
Eaton
,
B. M.
, 2001, “
One Dimensional, Transient Model of Heat, Mass, and Charge Transfer in a Proton Exchange Membrane
,” M.Sc. dissertation thesis, Virginia Polytechnic and State University, Blacksburg, VA.
8.
Weisbrot
,
K. R.
,
Grot
,
S. A.
, and
Vanderborgh
,
N. E.
, 1995, “
Through-the-Electrode Model of a Proton Exchange Membrane Fuel Cell
,”
Proc.-Electrochem. Soc.
0161-6374,
95-23
, pp.
152
166
.
9.
Weisbrot
,
K. R.
,
Vanderborgh
,
N. E.
, and
Grot
,
S. A.
, 1996, “
Modeling of Gaseous Flows within Proton Exchange Membrane Fuel Cell
,”
Proc. of Fuel Cell Seminar
, Orlando,
Courtesy Associates
,
Washington, DC
, pp.
635
638
.
10.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1996, “
Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy
,”
J. Electrochem. Soc.
0013-4651,
143
(
2
), pp.
587
599
.
11.
Zawodzinski
,
T. A.
,
Davey
,
J.
,
Valerio
,
J.
, and
Gottesfeld
,
S.
, 1995, “
The Water-Content Dependence of Electroosmotic Drag in Proton-Conducting Polymer Electrolytes
,”
Electrochim. Acta
0013-4686,
40
(
3
), pp.
297
302
.
12.
Ren
,
X.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 2000, “
Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance
,”
J. Electrochem. Soc.
0013-4651,
147
(
1
), pp.
92
98
.
13.
Newman
,
J. S.
, 1991,
Electrochemical Systems
, 2nd ed.,
Prentice-Hall
, Englewood Cliffs, NJ.
14.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical-Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
15.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical-Model of the Solid-Polymer-Electrolyte Fuel-Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
16.
Iczkowski
,
R. P.
, and
Cutlip
,
M. B.
, 1980, “
Voltage Losses in Fuel-Cell Cathodes
,”
J. Electrochem. Soc.
0013-4651,
127
(
7
), pp.
1433
1440
.
17.
Gloaguen
,
F.
, and
Durand
,
R.
, 1997, “
Simulations of PEFC Cathodes: An Effectiveness Factor Approach
,”
J. Appl. Electrochem.
0021-891X,
27
(
9
), pp.
1029
1035
.
18.
Perry
,
M. L.
,
Newman
,
J.
, and
Cairns
,
E. J.
, 1998, “
Mass Transport in Gas-Diffusion Electrodes: A Diagnostic Tool for Fuel-Cell Cathodes
,”
J. Electrochem. Soc.
0013-4651,
145
(
1
), pp.
5
15
.
19.
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Sundholm
,
G.
, 2002, “
Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode—I. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
149
(
4
), pp.
A437
A447
;
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Sundholm
,
G.
, 2002, “
Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode—II. Experimental
,”
J. Electrochem. Soc.
0013-4651,
149
(
4
), pp.
A448
A454
.
20.
Bird
,
B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2001,
Transport Phenomena
, 2nd ed.,
Wiley
, New York.
21.
Schögl
,
R.
, 1966, “
Membrane permeation in Systems Far From Equilibrium
,”
Ber. Bunsenges. Phys. Chem.
0005-9021,
70
, pp.
400
414
.
22.
Deuflhard
,
P.
, 1974, “
Modified Newton Method for Solution of Ill-Conditioned Systems of Non-Linear Equations With Application to Multiple Shooting
,”
Numer. Math.
0029-599X,
22
(
4
), pp.
289
315
.
23.
Deuflhard
,
P.
, 1979, “
Stepsize Control for Continuation Methods and Its Special Application to Multiple Shooting Techniques
,”
Numer. Math.
0029-599X,
33
(
2
), pp.
115
146
.
24.
COMSOLAB, ed., 2001, FEMLAB 3.0 User’s Guide,
Comsol
,
Stockholm
.
25.
Cleghorn
,
S. J. C.
,
Derouin
,
C. R.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1998, “
A Printed Circuit Board Approach to Measuring Current Distribution in a Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
28
(
7
), pp.
663
672
.
26.
Kulikovsky
,
A. A.
,
Kucemak
,
A.
, and
Kornyshev
,
A. A.
, 2005, “
Feeding PEM Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
(
6
), pp.
1323
1333
.
27.
Kornyshev
,
A. A.
, and
Kulikovsky
,
A. A.
, 2001, “
Characteristic Length of Fuel and Oxygen Consumption in Feed Channels of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
46
(
28
), pp.
4389
4395
.
28.
Kulikovsky
,
A. A.
, 2001, “
Quasi Three-Dimensional Modelling of the PEM Fuel Cell: Comparison of the Catalyst Layers Performance
,”
Fuel Cells
1615-6846,
1
(
2
), pp.
162
169
.
29.
West
,
A. C.
, and
Fuller
,
T. F.
, 1996, “
Influence of Rib Spacing in Proton-Exchange Membrane Electrode Assemblies
,”
J. Appl. Electrochem.
0021-891X,
26
(
6
), pp.
557
565
.
30.
Simoglou
,
A.
,
Argyropoulos
,
P.
,
Martin
,
E. B.
,
Scott
,
K.
,
Morris
,
A. J.
, and
Taama
,
W. M.
, 2001, “
Dynamic Modelling of the Voltage Response of Direct Methanol Fuel Cells and Stacks Part II: Feasibility Study of Model-Based Scale-Up and Scale-Down
,”
Chem. Eng. Sci.
0009-2509,
56
(
23
), pp.
6773
6779
.
31.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
You do not currently have access to this content.