We prepared novel ion exchange membranes for possible use in polymer electrolyte fuel cells (PEFCs) by the radiation-induced graft copolymerization of styrene and new crosslinker bis(vinyl phenyl)ethane (BVPE) into crosslinked polytetrafluoroethylene (cPTFE) films and subsequent sulfonation and then investigated their water uptake, proton conductivity, and stability in an oxidizing environment. In contrast to the conventional crosslinker, divinylbenzene (DVB), the degree of grafting of styrene∕BVPE increased in spite of high crosslinker concentrations in the reacting solution (up to 70mol%). Quantitative sulfonation of the aromatic rings in the crosslinked graft chains resulted in the preparation of membranes with a high ion exchange capacity that reached 2.9meqg. The bulk properties of the membranes were found to exceed those of Nafion membranes except for chemical stability. The emphasis was on the fact that the BVPE-crosslinked membranes exhibited the higher stability in the H2O2 solution at 60°C compared to the noncrosslinked and DVB-crosslinked ones, as well as decreased water uptake and reasonable proton conductivity. These results are rationalized by considering the reactivity between styrene and the crosslinker, which is an important factor determining the distribution of the crosslinks in the graft component. In the case of BVPE, the crosslinks at a high density were homogeneously incorporated even into the interior of the membrane because of its compatibility with styrene while the far too reactive DVB led to a crosslink formation only near the surface. The combination of both the cPTFE main chain and BVPE-based grafts, i.e., a perfect “double” crosslinking structure, is likely to effectively improve the membrane performances for PEFC applications.

1.
Vielstich
,
W.
,
Lamm
,
A.
, and
Gasteiger
,
H.
, 2003,
Handbook of Fuel Cells: Fundamentals, Technology and Applications, Volume 3: Fuel Cell Technology and Applications, Part I
,
Wiley
,
New York
, Chap. 30.
2.
Wirguin
,
C. H.
, 1996, “
Recent Advances in Perfluorinated Ionomer Membranes: Structure, Properties and Applications
,”
J. Membr. Sci.
0376-7388,
120
, pp.
1
33
.
3.
Mehta
,
V.
, and
Cooper
,
J. S.
, 2003, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
0378-7753,
114
, pp.
32
53
.
4.
Kerres
,
J. A.
, 2001, “
Development of Ionomer Membranes for Fuel Cells
,”
J. Membr. Sci.
0376-7388,
185
, pp.
3
27
.
5.
Savadogo
,
O.
, 1998, “
Emerging Membranes for Electrochemical Systems. I. Solid Polymer Electrolyte Membranes for Fuel Cell Systems
,”
J. New Mater. Electrochem. Syst.
1480-2422,
1
, pp.
47
66
.
6.
Smitha
,
B.
,
Sridhar
,
S.
, and
Khan
,
A. A.
, 2005, “
Solid Polymer Electrolyte Membranes for Fuel Cell Applications—A Review
,”
J. Membr. Sci.
0376-7388,
259
, pp.
10
26
.
7.
Miyatake
,
K.
,
Chikashige
,
Y.
, and
Watanabe
,
M.
, 2003, “
Novel Sulfonated Poly(arylene ether): A Proton Conductive Polymer Electrolyte Designed for Fuel Cells
,”
Macromolecules
0024-9297,
36
, pp.
9691
9693
.
8.
Nagarale
,
R. K.
,
Gohil
,
G. S.
,
Shahi
,
V. K.
, and
Rangarajan
,
R.
, 2004, “
Organic∕Inorganic Hybrid Membrane: Thermally Stable Cation-Exchange Membrane Prepared by the Sol-Gel Method
,”
Macromolecules
0024-9297,
37
, pp.
10023
10030
.
9.
Rikukawa
,
M.
, and
Sanui
,
K.
, 2000, “
Proton-Conducting Polymer Electrolyte Membranes Based on Hydrocarbon Polymers
,”
Prog. Polym. Sci.
0079-6700,
25
, pp.
1463
1502
.
10.
Souzy
,
R.
, and
Ameduri
,
B.
, 2005, “
Functional Fluoropolymers for Fuel Cell Membranes
,”
Prog. Polym. Sci.
0079-6700,
30
, pp.
644
687
.
11.
Dargaville
,
T. M.
,
George
,
G. A.
,
Hill
,
D. J.
, and
Whittaker
,
A. K.
, 2003, “
High Energy Radiation Grafting of Fluoropolymers
,”
Prog. Polym. Sci.
0079-6700,
28
, pp.
1355
1376
.
12.
Nasef
,
M. M.
,
Saidi
,
H.
,
Dessouki
,
A. M.
, and
El-Nesr
,
E. M.
, 2000, “
Radiation-Induced Grafting of Styrene onto Poly(tetrafluoroehtylene) (PTFE) Films. I. Effect of Grafting Conditions and Properties of the Grafted Films
,”
Polym. Int.
0959-8103,
49
, pp.
399
406
.
13.
Nasef
,
M. M.
,
Saidi
,
H.
,
Nor
,
H. M.
, and
Foo
,
O. M.
, 2000, “
Radiation-Induced Grafting of Styrene Onto Poly(tetrafluoroehtylene) (PTFE) Films Part II. Properties of The Grafted and Sulfonated Membranes
,”
Polym. Int.
0959-8103,
49
, pp.
1572
1579
.
14.
Gupta
,
B.
, and
Scherer
,
G. G.
, 1993, “
Proton-Exchange Membranes by Radiation Grafting of Styrene onto FEP Films. I. Thermal Characteristics of Copolymer Membranes
,”
J. Appl. Polym. Sci.
0021-8995,
50
, pp.
2129
2134
.
15.
Gupta
,
B.
,
Büchi
,
F. N.
, and
Scherer
,
G. G.
, 1994, “
Cation Exchange Membranes by Pre-Irradiation Grafting of Styrene Into FEP Films. I. Influence of Synthesis Conditions
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
32
, pp.
1931
1938
.
16.
Buchi
,
N.
,
Gupta
,
B.
,
Haas
,
O.
, and
Scherer
,
G. G.
, 1995, “
Study of Radiation-Grafted FEP-g-polystyrene Membranes as Polymer Electrolytes in Fuel Cells
,”
Electrochim. Acta
0013-4686,
40
, pp.
345
353
.
17.
Nasef
,
M. M.
,
Saidi
,
H.
,
Nor
,
H. M.
,
Dahlan
,
K. Z. M.
, and
Hashim
,
K.
, 1999, “
Cation Exchange Membranes by Radiation-Induced Graft Copolymerization of Styrene Onto PFA Copolymer Films. I. Preparation and Characterization of the Graft Copolymer
,”
J. Appl. Polym. Sci.
0021-8995,
73
, pp.
2095
2102
.
18.
Nasef
,
M. M.
,
Saidi
,
H.
,
Nor
,
H. M.
, and
Foo
,
O. M.
, 2000, “
Cation Exchange Membranes by Radiation-Induced Graft Copolymerization of Styrene Onto PFA Copolymer Films. II. Characterization of Sulfonated Graft Copolymer Membranes
,”
J. Appl. Polym. Sci.
0021-8995,
76
, pp.
1
11
.
19.
Elmidaoui
,
A.
,
Cherif
,
A. T.
,
Brunea
,
J.
,
Duclert
,
F.
,
Cohen
,
T.
, and
Gavach
,
C.
, 1992, “
Preparation of Perfluorinated Ion Exchange Membranes and Their Application in Acid Recovery
,”
J. Membr. Sci.
0376-7388,
67
, pp.
263
271
.
20.
Holmberg
,
S.
,
Lehtinen
,
T.
,
Näsman
,
J.
,
Ostrovskii
,
D.
,
Paronen
,
M.
,
Serimaa
,
R.
,
Sundholm
,
F.
,
Sundholm
,
G.
,
Torell
,
L.
, and
Torkkeli
,
M.
, 1996, “
Structure and Properties of Sulfonated Poly[(vinylidene fluoride)-g-styrene] Porous Membranes
,”
J. Mater. Chem.
0959-9428,
6
, pp.
1309
1317
.
21.
Elomaa
,
M.
,
Hietala
,
S.
,
Paronen
,
M.
,
Walsby
,
N.
,
Jokela
,
K.
,
Serimaa
,
R.
,
Torkkeli
,
M.
,
Lehtinen
,
T.
,
Sundholm
,
G.
, and
Sundholm
,
F.
, 2000, “
The State of Water and the Nature of Ion Clusters in Crosslinked Proton Conducting Membranes of Styrene Grafted and Sulfonated Poly(vinylidene fluoride)
,”
J. Mater. Chem.
0959-9428,
10
, pp.
2678
2684
.
22.
Wiley
,
R.
, and
Mayberry
,
G.
, 1963, “
Tracer Techniques for the Determination of Monomer Reactivity Ratios. IV. Copolymerization Characteristics of Some Divinyl Monomers
,”
J. Polym. Sci., Part A: Gen. Pap.
0449-2951,
1
, pp.
217
226
.
23.
Leihtinen
,
T.
,
Sundholm
,
G.
, and
Sundholm
,
F.
, 1999, “
Effect of Crosslinking on the Physical Properties of Proton Conducting PVDF-g-PSSA Membranes
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
677
683
.
24.
Yamaki
,
T.
,
Asano
,
M.
,
Maekawa
,
Y.
,
Morita
,
Y.
,
Suwa
,
T.
,
Chen
,
J.
,
Tsubokawa
,
N.
,
Kobayashi
,
K.
,
Kubota
,
H.
, and
Yoshida
,
M.
, 2003, “
Radiation Grafting of Styrene Into Crosslinked PTEE Films and Subsequent Sulfonation for Fuel Cell Applications
,”
Radiat. Phys. Chem.
0969-806X,
67
, pp.
403
407
.
25.
Yamaki
,
T.
,
Kobayashi
,
K.
,
Asano
,
M.
,
Kubota
,
H.
, and
Yoshida
,
M.
, 2004, “
Preparation of Proton Exchange Membranes Based on Crosslinked Polytetrafluoroethylene for Fuel Cell Applications
,”
Polymer
0032-3861,
45
, pp.
6569
6573
.
26.
Sato
,
K.
,
Ikeda
,
S.
,
Iida
,
M.
,
Oshima
,
A.
,
Tabata
,
Y.
, and
Washio
,
M.
, 2003, “
Study on Poly-Electrolyte Membrane of CPTFE by Radiation-Grafting
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
208
, pp.
424
428
.
27.
Li
,
J.
,
Sato
,
K.
,
Ichiduri
,
S.
,
Asano
,
S.
,
Ikeda
,
S.
,
Iida
,
M.
,
Oshima
,
A.
,
Tabata
,
Y.
, and
Washio
,
M.
, 2004, “
Pre-Irradiation Induced Grafting of Styrene into Crosslinked and Non-Crosslinked Polytetrafluoroethylene Films for Polymer Electrolyte Fuel Cell Applications. I: Influence of Styrene Grafting Conditions
,”
Eur. Polym. J.
0014-3057,
40
, pp.
775
783
.
28.
Li
,
J.
,
Sato
,
K.
,
Ichiduri
,
S.
,
Asano
,
S.
,
Ikeda
,
S.
,
Iida
,
M.
,
Oshima
,
A.
,
Tabata
,
Y.
, and
Washio
,
M.
, 2005, “
Pre-Irradiation Induced Grafting of Styrene Into Crosslinked and Non-Crosslinked Polytetrafluoroethylene Films for Polymer Electrolyte Fuel Cell Applications. II: Characterization of the Styrene Grafted Films
,”
Eur. Polym. J.
0014-3057,
41
, pp.
547
555
.
29.
Li
,
J.
,
Ichiduri
,
S.
,
Asano
,
S.
,
Mutou
,
F.
,
Ikeda
,
S.
,
Iida
,
M.
,
Miura
,
T.
,
Oshima
,
A.
,
Tabata
,
Y.
, and
Washio
,
M.
, 2005, “
Proton Exchange Membranes Prepared by Grafting of Styrene∕Divinylbenzene Into CPTFE Membranes
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
236
, pp.
333
337
.
30.
Lappan
,
U.
,
Geiβler
,
U.
, and
Uhlmann
,
S.
, 2005, “
Radiation-Induced Grafting of Styrene Into Radiation-Modified Fluoropolymer Films
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
236
, pp.
413
419
.
31.
Chen
,
J.
,
Asano
,
M.
,
Yamaki
,
T.
, and
Yoshida
,
M.
, 2005, “
Preparation of Sulfonated CPTFE-graft-Poly(alkyl vinyl ether) Membranes for Polymer Electrolyte Membrane Fuel Cells by Radiation Processing
,”
J. Membr. Sci.
0376-7388,
256
, pp.
38
45
.
32.
Suwa
,
T.
,
Takehisa
,
M.
, and
Machi
,
S.
, 1973, “
Melting and Crystallization Behavior of Poly(tetrafluoroethylene). New Method for Molecular Weight Measurement of Poly(tetrafluoroethylene) Using a Differential Scanning Calorimeter
,”
J. Appl. Polym. Sci.
0021-8995,
17
, pp.
3253
3257
.
33.
Li
,
W.-H.
,
Li.
,
K.
,
Stöver
,
H.
, and
Hamielec
,
A. E.
, 1994, “
High-Yield Synthesis and Characterization of 1,2-Bis(p-vinylphenyl)ethane
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
32
, pp.
2023
2027
.
34.
Sun
,
J.
,
Zhang
,
Y.
, and
Zhong
,
X.
, 1994, “
Radiation Crosslinking of Polytetrafluoroethylene
,”
Polymer
0032-3861,
35
, pp.
2881
2883
.
35.
Sun
,
J.
,
Zhang
,
Y.
,
Zhong
,
X.
, and
Zhu
,
X.
, 1994, “
Modification of Polytetrafluoroethylene by Radiation—1. Improvement in High Temperature Properties and Radiation Stability
,”
Radiat. Phys. Chem.
0969-806X,
44
, pp.
655
659
.
36.
Zawodzinski
,
T. A.
, Jr.,
Neeman
,
M.
,
Sillerud
,
L. O.
, and
Gottesfeld
,
S.
, 1991, “
Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes
,”
J. Phys. Chem.
0022-3654,
95
, pp.
6040
6044
.
37.
Hodgdon
,
R. B.
, Jr.
, 1968, “
Polyelectrolytes Prepared from Perfluoroalkylaryl Macromolecules
,”
Syst. Control Lett.
0167-6911,
6
, pp.
171
191
.
38.
Oshima
,
A.
,
Seguchi
,
T.
, and
Tabata
,
Y.
, 1997, “
ESR Study on Free Radicals Trapped in Crosslinked Polytetrafluoroethylene (PTFE)
,”
Radiat. Phys. Chem.
0969-806X,
50
, pp.
601
606
.
39.
Hübner
,
G.
, and
Roduner
,
E.
, 1999, “
EPR Investigation of HOĩ Radical Initiated Degradation Reactions of Sulfonated Aromatics as Model Compounds for Fuel Cell Proton Conducting Membranes
,”
J. Mater. Chem.
0959-9428,
9
, pp.
409
418
.
40.
Mattsson
,
B.
,
Ericson
,
H.
,
Torell
,
L. M.
, and
Sundholm
,
F.
, 2000, “
Degradation of a Fuel Cell Membrane, as Revealed by Micro-Raman Spectroscopy
,”
Electrochim. Acta
0013-4686,
45
, pp.
1405
1408
.
41.
Schmidt
,
T. J.
,
Simbeck
,
K.
, and
Scherer
,
G. G.
, 2005, “
Influence of Crosslinking on Performance of Radiation-Grafted and Sulfonated FEP 25 Membranes in H2‐O2 PEFC
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A93
A97
.
You do not currently have access to this content.