A carbon-aerogel-supported Pt catalyst with 22nm pore size distribution and low Pt loading (0.1mgcm2) has been tested in a proton exchange membrane fuel cell (PEMFC). The performance of the PEMFC and kinetic parameters of the catalyst at room temperature are discussed in terms of microstructure of the support and sulfonated tetrafluoroethylene (Nafion) distribution. The PEMFCs demonstrated power densities up to 0.5mWcm2 at 0.6V in air∕hydrogen and 2atm backpressure on both cathode and anode. Continuous cycling with upper potential sweep limits of 1.0 and 1.2V leads to degradation effects that result in decreasing of the electrochemical surface area (ESA) of the catalyst. The comparison of an ESA decrease for a 1.0 and 1.2V sweep limit after 1000cycles indicated that the higher degradation effects are due to the oxidation of carbon support.

1.
Gasteiger
,
H. A.
,
Panels
,
J. E.
, and
Yan
,
S. G.
, 2004, “
Dependence of PEM Fuel Cell Performance on Catalyst Loading
,”
J. Power Sources
0378-7753,
127
, pp.
162
171
.
2.
Haug
,
A. T.
,
White
,
R. E.
,
Weidner
,
J. W.
,
Huang
,
W.
,
Shi
,
S.
,
Stoner
,
T.
, and
Rana
,
N.
, 2002, “
Increasing Proton Exchange Membrane Fuel Cell Catalyst Effectiveness Through Sputter deposition
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
A280
A287
.
3.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2003, “
Single Domain PEMFC Model Based on Agglomerate Catalyst Geometry
,”
J. Power Sources
0378-7753,
115
(
1
), pp.
81
89
.
4.
Gomez de la Fuente
,
J. L.
,
Martinez-Huerta
,
M. V.
,
Rojas
,
S.
,
Terreros
,
P.
,
Fierro
,
J. L. G.
, and
Pena
,
M. A.
2005, “
Enhanced Methanol Electrooxidation Activity of PtRu Nanoparticles Supported on H2O2-Functionalized Carbon Black
,”
Carbon
0008-6223,
43
(
14
), pp.
3002
3005
.
5.
Cerro-Alarcon
,
M.
,
Maroto-Valiente
,
A.
,
Rodriguez-Ramos
,
I.
, and
Guerrero-Ruiz
,
A.
, 2005, “
Further Insights Into the Ru Nanoparticles-Carbon Interactions and Their Role in the Catalytic Properties
,”
Carbon
0008-6223,
43
(
13
), pp.
2711
2722
.
6.
Chen
,
C.
,
Chen
,
C.
,
Hsu
,
C.
, and
Li
,
H.
, 2005 “
Growth and Characteristics of Carbon Nanotubes on Carbon Cloth as Electrodes
,”
Diamond Relat. Mater.
0925-9635,
14
(
3–7
), pp.
770
773
.
7.
Rajalakshmi
,
N.
,
Ryu
,
H.
,
Shaijumon
,
M. M.
, and
Ramaprabhu
,
S.
, 2005, “
Performance of Polymer Electrolyte Membrane Fuel Cells With Carbon Nanotubes as Oxygen Reduction Catalyst Support Material
,”
J. Power Sources
0378-7753,
140
(
2
), pp.
250
257
.
8.
Zhang
,
D.
,
Shi
,
L.
,
Fang
,
J.
,
Li
,
X.
, and
Dai
,
K.
, 2005, “
Preparation and Modification of Carbon Nanotubes
,”
Mater. Lett.
0167-577X,
59
, pp.
4044
4047
.
9.
Squing
,
C. D.
,
Cheng
,
T. T.
,
Aindow
,
M.
, and
Erkey
,
C.
, 2005, “
Investigation of the Supercritical Deposition of Platinum Nanoparticles Into Carbon Aerogels
,”
Microporous Mesoporous Mater.
1387-1811,
80
(
1–3
), pp.
11
23
.
10.
Smirnova
,
A.
,
Dong
,
X.
,
Hara
,
H.
, and
Sammes
,
N.
, 2006, “
New Generation of Catalyst Layers for PMEFCs Based on Carbon Aerogels Supported Pt Catalyst (CASPC)
,”
Fuel Cells: Reaching Towards Commercialization
,
Springer
,
New York
, Ch. 7.
11.
Gamburzev
,
S.
, and
Appleby
,
A. J.
,2002, “
Recent Progress in Performance Improvement of the Proton Exchange Membrane Fuel Cell (PEMFC)
,”
J. Power Sources
0378-7753,
107
, pp.
5
12
.
12.
Schmidt
,
T. J.
,
Paulus
,
U. A.
,
Gastaeiger
,
H. A.
, and
Behm
,
R. J.
, 2001, “
The Oxygen Reduction Reaction on a Pt∕carbon Fuel Cell Catalysts in Presence of Chloride Anions
,”
J. Electroanal. Chem.
0022-0728,
508
, pp.
41
47
.
13.
Uchida
,
M.
,
Fukuoka
,
Yu.
,
Sugawara
,
Ya.
,
Eda
,
N.
, and
Ohta
,
A.
, 1996, “
Effects of Microstructure of Carbon Support in the Catalyst Layer on the Performance of Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
2245
2252
.
14.
dos Santos
,
J. H. Z.
,
Ban
,
H. T.
,
Teranishi
,
T.
,
Uozumi
,
T.
,
Sano
,
T.
, and
Soga
,
K.
, 2001 “
Indenyl-Silica Xerogels: New Materials for Supporting Metallocene Catalysts
,”
Appl. Catal., A
0926-860X,
220
, pp.
287
302
.
15.
Groß
,
J.
,
Fricke
,
J.
,
Pekala
,
R. W.
, and
Hrubesh
,
L. W.
, 1992, “
Elastic Nonlinearity of Aerogels
,”
Phys. Rev. B
0163-1829,
45
, p.
12774
.
16.
Smirnova
,
A.
,
Dong
,
X.
,
Hara
,
H.
,
Vasiliev
,
A.
, and
Sammes
,
N.
, 2005, “
Evaluation of Novel Carbon Aerogel-Supported Catalysts for PEM Fuel Cell Application
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
149
158
.
17.
Ha
,
S.
,
Adams
,
B.
, and
Masel
,
R. I.
, 2004, “
A Miniature Air Breathing Direct Formic Acid Fuel Cell
,”
J. Power Sources
0378-7753,
128
, pp.
119
124
.
18.
Uribe
,
F. A.
and
Zawodzinski
,
T. A.
, 2002, “
A Study of Polymer Electrolyte Fuel Cell Performance at High Voltages: Dependence on Cathode Catalyst Layer Composition and on Voltage Conditioning
,”
Electrochim. Acta
0013-4686,
47
(22–23), pp.
3799
3806
.
19.
Litster
,
S.
and
McLean
,
G.
, 2004, “
PEM Fuel Cell Electrodes
,”
J. Power Sources
0378-7753,
130
(1–2), pp.
61
76
.
20.
Haile
,
S. M.
, 2003, “
Fuel Cell Materials and Components
,”
Acta Mater.
1359-6454,
51
(
19
), pp
5981
6000
.
21.
Song
,
C.
, 2002, “
Fuel Processing for Low-Temperature and High-Temperature Fuel Cells: Challenges and Opportunities for Sustainable Development in the 21st Century
,”
Catal. Today
0920-5861,
77
(
1–2
), pp.
17
49
.
22.
Darling
,
R. M.
, and
Meyers
,
J. P.
, 2003, “
Kinetic Model of Platinum Dissolution in PEMFCs
,”
J. Electrochem. Soc.
0013-4651,
150
(
11
), pp.
A1523
A1527
.
23.
Kinishita
,
K.
, 1988,
Carbon, Electrochemical and Physicochemical Properties
,
Wiley
,
New York
.
You do not currently have access to this content.