During the operation of a proton exchange membrane (PEM) fuel cell, significant variation of the local current density could exist across the cell causing sharp temperature and stress gradients in certain points, and affecting the water management, all of which severely impact the cell performance and reliability. The variation of local current density is a critical issue in the performance of PEM fuel cell, and is influenced by the operating conditions. This article presents a model-assisted parametric design with the objective of determining the operating conditions which maximize the fuel cell performance while maintaining a level of uniformity in the current density distribution. A comprehensive two-dimensional model is adopted to simulate the species transport and electrochemical phenomena in a PEM fuel cell. Numerical simulations are performed for over a wide range of operating conditions to analyze the effects of various operating parameters on the variation of local current density of the fuel cell, and to develop design windows which serve as guideline in the design for maximum power density, minimum reactant stoichiometry, and uniform current density distribution.

1.
Stumper
,
J.
,
Campbell
,
S. A.
,
Wilkinson
,
D. P.
,
Johnson
,
M. C.
, and
Davis
,
M.
, 1998, “
In-Situ Methods for the Determination of Current Distributions in PEM Fuel Cells
,”
Electrochim. Acta
0013-4686,
43
(
24
), pp.
3773
3883
.
2.
Maggio
,
G.
,
Recupero
,
V.
, and
Mantegazza
,
C.
, 1996, “
Modelling of Temperature Distribution in a Solid Polymer Electrolyte Fuel Cell Stack
,”
J. Power Sources
0378-7753,
62
, pp.
167
174
.
3.
Mench
,
M. M.
, and
Wang
,
C. Y.
, 2003, “
An In-Situ Method for Determination of Current Distributions in PEM Fuel Cells Applied to a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
1
), pp.
A79
A85
.
4.
Weiser
,
Ch.
,
Helmbold
,
A.
, and
Glzow
,
E.
, 2000, “
A New Technique for Two-Dimensional Current Distribution Measurements in Electrochemical Cells
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
803
807
.
5.
Candusso
,
D.
,
Poirot-Crouvezier
,
J. P.
,
Bador
,
B
.,
Rullire
,
E.
,
Soulier
,
R.
, and
Voyant
,
J. Y.
, 2004, “
Determination of Current Density Distribution in Proton Exchange Membrane Fuel Cells
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
25
, pp.
67
74
.
6.
Shimpalee
,
S.
,
Greenway
,
S.
,
Spuckler
,
D.
, and
Van Zee
,
J. W.
, 2004, “
Predicting Water and Current Distributions in a Commercial-Size PEMFC
,”
J. Power Sources
0378-7753,
135
, pp.
79
87
.
7.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541,
44
(
11
), pp.
2410
2422
.
8.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
9.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
10.
You
,
L.
, and
Liu
,
H.
, 2002, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2277
2287
.
11.
Ju
,
H.
, and
Wang
,
C. Y.
, 2004, “
Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data
,”
J. Electrochem. Soc.
0013-4651,
151
(
11
), pp.
A1954
A1960
.
12.
Mishra
,
V.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2005, “
Analysis and Design of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
141
, pp.
47
64
.
13.
Mawardi
,
A.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2005, “
Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
121
135
.
14.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
, New York.
15.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
16.
Parthasarathy
,
A.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface—A Microelectrode Investigation
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2530
2537
.
17.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
, and
Srinivasan
,
S.
, 1988, “
Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Density in SPE Fuel Cells
,”
J. Electroanal. Chem.
0022-0728,
251
, pp.
275
295
.
18.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
You do not currently have access to this content.