In the present investigation ethanol-water mixtures were directly fed to a yttria stabilized zirconia (YSZ) electrochemical reactor operated in a fuel cell mode and the preliminary results are presented and discussed. Polycrystalline films of platinum (Pt) and silver (Ag) were, respectively, tested as anode catalysts in a wide range of experimental conditions while the cathode was exposed to the atmospheric air. The single direct ethanol solid oxide fuel cell (DE-SOFC) tests were performed in order to investigate separately Pt and Ag’s activities towards ethanol steam reaction and fuel cell performance (PtDESOFC and AgDESOFC). In both cases the products were on-line analyzed by a mass spectrograph, a gas chromatograph and a series of gas analysers under fuel cell mode of operation. The results showed that even at high temperature values (>750°C) the main products were CH3CHO, CH4, CO, H2, and CO2. Furthermore, as expected the single DESOFC performance was improved as the temperature increased. However, a relatively poor fuel cell performance has been obtained in both cases, which could be attributed to the following reasons: the relatively low (for YSZ electrolyte) operation temperature, the presence of homogeneous reactions, and the cell configuration.

1.
Douvartzides
,
S.
,
Coutelieris
,
F.
, and
Tsiakaras
,
P.
, 2004, “
Exergy Analysis of a Solid Oxide Fuel Cell Power Plant Fed by Either Ethanol or Methane
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
224
230
.
2.
Douvartzides
,
S.
,
Coutelieris
,
F.
,
Demin
,
A.
, and
Tsiakaras
,
P.
, 2004, “
Electricity From Ethanol Fed SOFCs: The Expectations for Sustainable Development and Technological Benefits
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
4
), pp.
375
379
.
3.
Douvartzides
,
S. L.
,
Coutelieris
,
F. A.
,
Demin
,
A. K.
, and
Tsiakaras
,
P. E.
, 2003, “
Fuel Options for Solid Oxide Fuel Cells: A Thermodynamic Analysis
,”
AIChE J.
0001-1541,
49
(
1
), pp.
248
257
.
4.
Vielstich
,
W.
,
Lamm
,
A.
, and
Gasteiger
,
H. A.
, 2003,
Handbook of Fuel Cells, Fundamentals Technology and Applications
,
Wiley
, Chichester, Vol.
2
, pp.
402
405
.
5.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
, New York.
6.
Sasaki
,
K.
,
Watanabe
,
K.
, and
Teraoka
,
Y.
, 2004, “
Direct-Alcohol SOFCs: Current-Voltage Characteristics and Fuel Gas Compositions
,”
J. Electrochem. Soc.
0013-4651,
151
(
7
), pp.
A965
A970
.
7.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
8.
Steele
,
B. C. H.
, 1999, “
Fuel-Cell Technology: Running on Natural Gas
,”
Nature (London)
0028-0836,
400
, pp.
619
621
.
9.
Craciun
,
R.
,
Park
,
S.
,
Gorte
,
R. J.
,
Vohs
,
J. M.
,
Wang
,
C.
, and
Worrel
,
W. L.
, 1999, “
A Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
146
(
11
), pp.
4019
4022
.
10.
Murray
,
E. P.
,
Tsai
,
T.
, and
Barnett
,
S. A.
, 1999, “
A Direct-Methane Fuel Cell With a Ceria-Based Anode
,”
Nature (London)
0028-0836,
400
, pp.
649
651
.
11.
Saunders
,
G. J.
,
Preece
,
J.
, and
Kendall
,
K.
, 2004, “
Formulating Liquid Hydrocarbon Fuels for SOFCs
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
23
26
.
12.
Yashiro
,
K.
,
Yamada
,
N.
,
Kawada
,
T.
,
Hong
,
J. O.
,
Kamai
,
A.
,
Nigara
, and
Mizusaki
,
Y.
, 2002, “
Demonstration and Stack Concept of Quick Startup/Shutdown SOFC
,”
Electrochemistry
,
70
(
12
), pp.
958
960
.
13.
Tatemi
,
A.
,
Wang
,
S.
,
Ishihara
,
T.
,
Nishiguchi
,
H.
, and
Takita
,
Y.
, 2003, “
Power Generating Property of Direct Dimethyl Ether SOFC Using LaGaO3 Based Perovskite Electrolyte
,”
Proc. 8th International Symposium on Solid Oxide Fuel Cells (SOFC VIII)
,
S. C.
Singhal
and
M.
Dokiya
, eds., Paris, France. SOFC VIII, Electrochem. Soc., PV. 2003-07, pp.
1266
1275
.
14.
Sasaki
,
K.
, and
Teraoka
,
Y.
, 2003, “
Equilibria in Fuel Cell Gases
,”
J. Electrochem. Soc.
0013-4651,
150
(
7
), pp.
A878
A884
.
15.
Zhou
,
W. J.
,
Song
,
S. Q.
,
Li
,
W. Z.
,
Zhou
,
Z. H.
,
Sun
,
G. Q.
,
Xin
,
Q.
,
Douvartzides
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Direct Ethanol Fuel Cells Based on PtSn Anodes: The Effect of Sn Content on the Fuel Cell Performance
,”
J. Power Sources
0378-7753,
140
(
1
), pp.
50
58
.
16.
Zhou
,
W.
,
Zhou
,
Z.
,
Song
,
S.
,
Li
,
W.
,
Sun
,
G.
,
Tsiakaras
,
P.
, and
Xin
,
Q.
, 2003, “
Pt Based Anode Catalysts for Direct Ethanol Fuel Cells
,”
Appl. Catal., B
0926-3373,
46
(
2
), pp.
273
285
.
17.
Song
,
S.
,
Zhou
,
W.
,
Liang
,
Z.
,
Cai
,
R.
,
Sun
,
G.
,
Xin
,
Q.
,
Stergiopoulos
,
V.
, and
Tsiakaras
,
P.
, 2005, “
The Effect of Methanol and Ethanol Cross-Over on the Performance of PtRu∕C-Based Anode DAFCs
,”
Appl. Catal., B
0926-3373,
55
(
1
), pp.
65
72
.
18.
Song
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Recent Progress in Direct Ethanol Proton Exchange Membrane Fuel Cells (DE-PEMFCs)
,”
Appl. Catal., B
0926-3373 (in press).
19.
Andreadis
,
G.
,
Song
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Simulation Using a Mathematical Model for a Direct Ethanol Fuel Cell Anode
,” Ninth Grove Fuel Cell Symposium, October 4–6, London.
20.
Song
,
S.
,
Douvartzides
,
S.
, and
Tsiakaras
,
P.
, 2005, “
Exergy Analysis of an Ethanol Fuelled Proton Exchange Membrane (PEM) Fuel Cell System for Automobile Applications
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
502
514
.
21.
Morel
,
B.
,
Laurencin
,
J.
,
Bultel
,
Y.
, and
Lefebvre-Joud
,
F.
, 2005, “
Anode-Supported SOFC Model Centered on the Direct Internal Reforming
,”
J. Electrochem. Soc.
0013-4651,
152
(
7
), pp.
A1382
A1389
.
22.
Jiang
,
Y.
, and
Virkar
,
A. V.
, 2001, “
A High Performance, Anode-Supported Solid Oxide Fuel Cell Operating on Direct Alcohol
,”
J. Electrochem. Soc.
0013-4651,
148
(
7
), pp.
A706
A709
.
23.
Douvartzides
,
S. L.
, and
Tsiakaras
,
P. E.
, 2002, “
Electrochemically Promoted Catalysis: The Case of Ethanol Oxidation Over Pt
,”
J. Catal.
0021-9517,
211
(
2
), pp.
521
529
.
24.
Liguras
,
D.
,
Kondarides
,
D.
, and
Verykios
,
X.
, 2003, “
Production of Hydrogen for Fuel Cells by Steam Reforming of Ethanol Over Supported Noble Metal Catalysts
,”
Appl. Catal., B
0926-3373,
43
(
4
), pp.
345
354
.
You do not currently have access to this content.