The electrochemical study of different supported and unsupported Pt-based catalysts used in polymer electrolyte fuel cells (PEMFCs) has been made by means of thin film rotating disk electrode (RDE) method. The comparison of electrochemical surface area (ESA) was made using cyclic voltammetry measurements in H2SO4 or HClO4 at room temperature and scanning rates of 20 and 100mVs. Oxygen reduction activity for aerogel-supported and carbon-supported Pt catalysts was evaluated at various rotation speeds in the range of 0-2500rpm and compared to the catalytic activity of unsupported Pt-black catalyst. The calculated values of Levich constant for the oxygen reduction reaction (ORR) indicate dependence on the applied voltage and either 4 or 2–4 electron transfer mechanism. The hydrogen peroxide by-product formation was determined with a rotating ring disk electrode (RRDE) and was observed to take place mostly at voltages below 0.6V due to the limitations from mass transport effects. The results obtained at different Pt loadings in the range of 10-46.5wt% Pt demonstrated that XC-72 and aerogel-based catalysts are foreseen to have higher ESA in comparison to other tested supported and unsupported commercially available catalysts.

1.
González-Huerta
,
R. G.
,
Chávez-Carvayar
,
J. A.
, and
Solorza-Feria
,
O.
, 2006, “
Electrocatalysis of Oxygen Reduction on Carbon Supported Ru-based Catalysts in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
153
(
1
), pp.
11
17
.
2.
Zhang
,
D.
,
Shi
,
L.
,
Fang
,
J.
,
Li
,
X.
, and
Dai
,
K.
, 2005, “
Preparation and Modification of Carbon Nanotubes
,”
Mater. Lett.
0167-577X,
59
(
29–30
), pp.
4044
4047
.
3.
Carmo
,
M.
,
Paganin
,
V. A.
,
Rosolen
,
J. M.
, and
Gonzalez
,
E. R.
, 2005, “
Alternative Supports for the Preparation of Catalysts for Low-Temperature Fuel Cells: The Use of Carbon Nanotubes
,”
J. Power Sources
0378-7753,
142
(
1–2
), pp.
169
176
.
4.
Smirnova
,
A.
,
Dong
,
X.
,
Hara
,
H.
,
Vasiliev
,
A.
, and
Sammes
,
N.
, 2005, “
Novel Carbon Aerogel-Supported Catalysts for PEM Fuel Cell Application
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
2
), pp.
149
158
.
5.
Saquing
,
C. D.
,
Kang
,
D.
,
Aindow
,
M.
, and
Erkey
,
C.
, 2005, “
Investigation of the Supercritical Deposition of Platinum Nanoparticles into Carbon Aerogels
,”
Microporous Mesoporous Mater.
1387-1811,
80
(
1–3
), pp.
11
23
.
6.
Paulus
,
U. A.
,
Wokaun
,
A.
,
Scherer
,
G. G.
,
Schmidt
,
T. J.
,
Stamenkovic
,
V.
,
Radmilovic
,
V.
,
Markovic
,
N. M.
, and
Ross
,
P. N.
, 2005, “
Oxygen Reduction on Carbon-Supported Pt-Ni and Pt-Co Alloy Catalysts
,”
J. Phys. Chem. B
1089-5647,
106
(
16
), pp
4182
4191
.
7.
Paulus
,
U. A.
,
Schmidt
,
T. J.
,
Gasteiger
,
H. A.
, and
Behm
,
R. J.
, 2001, “
Oxygen Reduction on a High-Surface Area Pt/Vulcan Carbon Catalyst: A Thin-Film Rotating Ring-Disk Electrode Study
,”
J. Electroanal. Chem.
0022-0728,
495
(
2
), pp.
134
145
.
8.
Gasteiger
,
H. A.
,
Kocha
,
S. S.
,
Sompalli
,
B.
, and
Wagner
,
F. T.
, 2005, “
Activity Benchmarks and Requirements for Pt, Pt-alloy, and non-Pt Oxygen Reduction Catalysts for PEMFCs
,”
Appl. Catal., B
0926-3373,
56
(
1–2
) pp.
9
35
.
9.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
J. Power Sources
0378-7753,
94
(
1
),
40
50
.
10.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
, 2nd Edition,
Wiley
,
London
, p.
428
.
11.
Parthasarathy
,
S.
,
Srinivasan
,
S.
,
Applby
,
A. J.
, and
Martin
,
C. R.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2530
2537
.
12.
Anderson
,
A. B.
, and
Albu
,
T. V.
, 1999, “
Ab Initio Determination of Reversible Potentials and Activation Energies for Outer-Sphere Oxygen Reduction to Water and the Reverse Oxidation Reaction
,”
J. Am. Chem. Soc.
0002-7863,
121
(
50
),
11855
11863
.
13.
Anderson
,
A. B.
, and
Albu
,
T. V.
, 2000, “
Catalytic Effect of Platinum of Oxygen Reduction an Ab Initio Model Including Electrode Potential Dependence
,”
J. Electrochem. Soc.
0013-4651,
147
(
11
), pp.
4229
4238
.
14.
Shi
,
Z.
,
Zhang
,
J.
,
Liu
,
Z. S.
,
Wang
,
H.
, and
Wilkinson
,
D. P.
, 2006, “
Current Status of Ab initio Quantum Chemistry Study for Oxygen Electroreduction on Fuel Cell Catalysts
,”
Electrochim. Acta
0013-4686,
51
(
10
), pp.
1905
1916
.
15.
Adzic
,
R.
, 1998, in Electrocatalysis,
J.
Lipkowski
and
P. N.
Ross
(eds.),
Wiley/VCH
,
New York
, Chap. 5.
16.
Murthi
,
V. S.
,
Urian
,
C.
, and
Mukerjee
,
S.
, 2004, “
Oxygen Reduction Kinetics in Low and Medium Temperature Acid Environment: Correlation of Water Activation and Surface Properties in Supported Pt and Pt Alloy Electrocatalysts
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
11011
11023
.
You do not currently have access to this content.