This paper sets out the results of mathematical modeling and numerical simulations with regard to the influences of the type and thickness of electrolyte on Solid Oxide Fuel Cell Hybrid System (SOFC-HS) performance. A change of electrolyte materials can result in total hybrid system efficiency increasing from around 48% HHV (53% LHV) to about 65% HHV (72% LHV) in an environment where turbine inlet temperature and gas turbine subsystem pressure ratio remain unchanged. The governing equations of SOFC-HS modeling are given. An adequate simulator of the SOFC stack was made and described. Based on this simulator, a model of the 260kWe Siemens Westinghouse unit was built. The performance of this SOFC-HS with different electrolyte materials and thicknesses is shown, and some characteristics are given and described. The advantages and disadvantages of different electrolyte types from a hybrid system performance point of view are indicated.

1.
Minh
,
N. Q.
, 2004, “
Solid Oxide Fuel Cell Technology—Features and Applications
,”
Solid State Ionics
0167-2738,
174
, pp.
271
277
.
2.
Milewski
,
J.
, and
Miller
,
A.
, 2005, “
Thermodynamic of SOFC Hybrid System—Optimization and Parameters Selection
,” World Hydrogen Technology Convention, Singapore.
3.
Li
,
P.-W.
, and
Suzuki
,
K.
, 2004, “
Numerical Modeling and Performance Study of a Tubular SOFC
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A548
A557
.
4.
Veyo
,
S. E.
,
Litzinger
,
K. P.
,
Vora
,
S. D.
, and
Lundberg
,
W. L.
, 2002, “
Status Of Pressurized Sofc/Gas Turbine Power System Development At Siemens Westinghouse
,” ASME Paper No. GT-2002-30670.
5.
Yamamoto
,
O.
, 2000, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
0013-4686,
45
, pp.
2423
2435
.
6.
Milewski
,
J.
,
Miller
,
A.
, and
Sałaciński
,
J.
,
Badyda
,
K.
, 2005,
Proceedings of International Conference—Energy from Gas
, Zakopane, Poland.
7.
Lundberg
,
W. L.
,
Holmes
,
R. A.
,
King
,
J. E.
, and
Israelson
,
G. A.
,
Zafred
,
P. R.
,
Kothmann
,
R. E.
,
Moritz
,
R. R.
, and
Veyo
,
S. E.
, 2000, “
A High Efficiency PSOFC/ATS-Gas Turbine Power System—Final Report
,” Siemens-Westinghouse Power Corporation, Contract No. DE-AC26-98FT40355.
8.
Hyprotech Corporation, 1999, HYSYS.PLANT 2.1, user guide.
9.
Marsano
,
F.
,
Magistri
,
L.
,
Bozzolo
,
M.
, and
Tarnowski
,
O.
, 2004, “
Influence of Fuel Composition on Solid Oxide Fuel Cell Hybrid System Layout and Performance
,” ASME Paper No. GT2004-53853.
10.
Van Herle
,
J.
,
Maréchal
,
F.
,
Leuenberger
,
S.
,
Membrez
,
Y.
,
Bucheli
,
O.
, and
Favrat
,
D.
, 2004, “
Process Flow Model of Solid Oxide Fuel Cell System Supplied With Sewage Biogas
,”
J. Power Sources
0378-7753,
131
, pp.
127
141
.
11.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2004, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
0378-7753,
129
, pp.
216
228
.
12.
Milewski
,
J.
, and
Miller
,
A.
, 2004, “
Mathematical Model of SOFC (Solid Oxide Fuel Cell) for Power Plant Simulations
,” ASME Paper No. GT2004-53787.
13.
Bove
,
R.
,
Lunghi
,
P.
, and
Sammes
,
N. M.
, 2005, “
SOFC Mathematic Model for Systems Simulations. Part one: From a Micro-Detailed to Macro-Black-Box Model
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
181
187
.
14.
Virkar
,
A. V.
, 2005, “
Theoretical Analysis of the Role of Interfaces in Transport Through Oxygen Ion and Electron Conducting Membranes
,”
J. Power Sources
0378-7753,
147
, pp.
8
31
.
15.
Zha
,
S. W.
,
Xia
,
C. R.
, and
Meng
,
G. M.
, 2001, “
Calculation of e.m.f. of Solid Oxide Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
93
98
.
16.
Jiang
,
Y.
, and
Virkar
,
A. V.
, 2003, “
Fuel Composition and Dilutent Effect on Gas Transport and Performance of Anode-Supported SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A942
A951
.
17.
Feng
,
Z.
, and
Virkar
,
A. V.
, 2005, “
Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
0378-7753,
141
, pp.
79
95
.
18.
Chan
,
S. H.
,
Chen
,
X. J.
, and
Khor
,
K. A.
, 2003, “
A Simple Bilayer Electrolyte Model for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
158
, pp.
29
43
.
19.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
20.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
, 2005, “
Detailed Characteristic Comparison Between Planar and MOLB-type SOFCs
,”
J. Power Sources
0378-7753,
143
, pp.
75
83
.
21.
Palsson
,
J.
, and
Selimovic
,
A.
, 2001, “
Design and Off-Design Predictions of a Combined SOFC and Gas Turbine System
,” ASME Paper No. 2001-GT0379.
22.
Lin
,
Y.
, and
Beale
,
S.
, 2003, “
Performance Predictions in Solid Oxide Fuel Cells
,” Third International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia.
23.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2003, “
Multi-level Modeling of SOFC-Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
889
900
.
24.
Uechi
,
H.
,
Kimijima
,
S.
, and
Kasagi
,
N.
, 2001, “
Cycle Analysis of Gas Turbine-Fuel Cell Hybrid Micro Generation System
,” ASME Paper No. JPGC2001/PWR-19171.
25.
Aguiar
,
P.
,
Asjiman
,
C. S.
, and
Brandon
,
N. P.
, 2004, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
0378-7753,
138
, pp.
120
136
.
26.
Leng
,
Y. J.
,
Chan
,
S. H.
,
Khor
,
K. A.
, and
Jiang
,
S. P.
, 2003, “
Development of LSM/YSZ Composite Cathode for Anode-Supported Solid Oxide Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
34
, pp.
409
415
.
27.
Leah
,
R. T.
,
Brandon
,
N. P.
, and
Aguiar
,
P.
, 2005, “
Modelling of Cells, Stacks, and Systems Based Around Metal-Supported Planar IT-SOFC Cells With CGO Electrolytes Operating at 500–600°C
,”
J. Power Sources
0378-7753,
145
, pp.
336
352
.
28.
Gemmen
,
R. S.
, and
Johnson
,
C. D.
, 2005, “
Effect of Load Transients on SOFC Operation-Current Reversal on Loss Load
,”
J. Power Sources
0378-7753,
144
, pp.
152
164
.
29.
Larrain
,
D.
,
Van helre
,
J.
,
Marechal
,
F.
, and
Favrar
,
D.
, 2004, “
Generalized Model of Planar SOFC Repeat Element for Design Optimization
”,
J. Power Sources
0378-7753,
131
, pp.
304
312
.
30.
Eguchi
,
K.
, 1997, “
Ceramic Materials Containing Rare Earth Oxides for Solid Oxide Fuel Cell
,”
J. Alloys Compd.
0925-8388,
250
, pp.
486
491
.
31.
Chan
,
S. H.
,
Chen
,
X. J.
, and
Khor
,
K. A.
, 2003, “
A Simple Bilayer Electrolyte Model for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
158
, pp.
29
43
.
You do not currently have access to this content.