Abstract

This paper introduces an ultrasound-assisted multistage constant current (UA-MSCC) charging protocol to enhance the charging performance of lithium-ion batteries. In this approach, ultrasound is applied during the final portion of each MSCC charging phase. Experimental results demonstrate that ultrasound decreases the internal resistance of pouch cells by up to 7%, leading to significant increase in charging capacity during each MSCC stage. The overall charging time is reduced by 26% compared to the conventional constant current–constant voltage (CCCV) protocol. The performance improvement delivered by this ultrasound-assisted charging approach is especially large when the battery is charged at low temperatures and to a partial capacity. Notably, the application of ultrasound improves the coulombic efficiency to levels comparable to that at the room temperature when charging in cold environments (0 °C). This approach can be applied to commercial batteries to immediately improve their charging performance, and can be seamlessly integrated into battery management systems. Unlike approaches that necessitate electrode material modifications or electrolyte additives, which require a long development time, this UA-MSCC charging protocol offers a practical and easily applicable solution for improving the battery charging performance.

References

1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2010
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
171
179
.
2.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2011
, “
Challenges for Rechargeable Batteries
,”
J. Power Sources
,
196
(
16
), pp.
6688
6694
.
3.
Miller
,
T. J.
,
2002
, “
Lithium Ion Battery Automotive Applications and Requirements
,”
Proceedings of the Annual Battery Conference on Applications and Advances
,
Long Beach, CA
,
Jan. 18
,
Institute of Electrical and Electronics Engineers Inc.
, pp.
113
118
.
4.
Seo
,
G.
,
Ha
,
J.
,
Kim
,
M.
,
Park
,
J.
,
Lee
,
J.
,
Park
,
E.
,
Bong
,
S.
, et al
,
2022
, “
Rapid Determination of Lithium-Ion Battery Degradation: High C-Rate LAM and Calculated Limiting LLI
,”
J. Energy Chem.
,
67
(
4
), pp.
663
671
.
5.
Zhang
,
C.
,
Jiang
,
J.
,
Gao
,
Y.
,
Zhang
,
W.
,
Liu
,
Q.
, and
Hu
,
X.
,
2017
, “
Charging Optimization in Lithium-Ion Batteries Based on Temperature Rise and Charge Time
,”
Appl. Energy
,
194
, pp.
569
577
.
6.
Methekar
,
R.
,
Ramadesigan
,
V.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2010
, “
Optimum Charging Profile for Lithium-Ion Batteries to Maximize Energy Storage and Utilization
,”
ECS Trans.
,
25
(
35
), pp.
139
146
.
7.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2006
, “
Study of the Charging Process of a LiCoO2-Based Li-Ion Battery
,”
J. Power Sources
,
160
(
2 Spec. Iss.
), pp.
1349
1354
.
8.
Wang
,
F.
,
Cui
,
N.
, and
Fang
,
H.
,
2017
, “
Multi Segment Charging Strategy for Lithium Ion Battery Based on Taguchi Method
,”
Proceedings—2017 Chinese Automation Congress, CAC 2017
,
Jinan, China
,
Oct. 20–22
. pp.
5057
5061
.
9.
Zhang
,
S. S.
,
2006
, “
The Effect of the Charging Protocol on the Cycle Life of a Li-Ion Battery
,”
J. Power Sources
,
161
(
2
), pp.
1385
1391
.
10.
Choi
,
S. S.
, and
Lim
,
H. S.
,
2002
, “
Factors That Affect Cycle-Life and Possible Degradation Mechanisms of a Li-Ion Cell Based on LiCoO2
,”
J. Power Sources
,
111
(
1
), pp.
130
136
.
11.
Vo
,
T. T.
,
Chen
,
X.
,
Shen
,
W.
, and
Kapoor
,
A.
,
2015
, “
New Charging Strategy for Lithium-Ion Batteries Based on the Integration of Taguchi Method and State of Charge Estimation
,”
J. Power Sources
,
273
, pp.
413
422
.
12.
Chen
,
L. R.
,
Hsu
,
R. C.
, and
Liu
,
C. S.
,
2008
, “
A Design of a Grey-Predicted Li-Ion Battery Charge System
,”
IEEE Trans. Ind. Electron.
,
55
(
10
), pp.
3692
3701
.
13.
Chen
,
L. R.
,
Wu
,
S. L.
,
Shieh
,
D. T.
, and
Chen
,
T. R.
,
2013
, “
Sinusoidal-Ripple-Current Charging Strategy and Optimal Charging Frequency Study for Li-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
88
97
.
14.
Chen
,
L. R.
,
2007
, “
A Design of an Optimal Battery Pulse Charge System by Frequency-Varied Technique
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
398
405
.
15.
Amanor-Boadu
,
J. M.
,
Guiseppi-Elie
,
A.
, and
Sánchez-Sinencio
,
E.
,
2018
, “
Search for Optimal Pulse Charging Parameters for Li-Ion Polymer Batteries Using Taguchi Orthogonal Arrays
,”
IEEE Trans. Ind. Electron.
,
65
(
11
), pp.
8982
8992
.
16.
Huang
,
A.
,
Liu
,
H.
,
Manor
,
O.
,
Liu
,
P.
, and
Friend
,
J.
,
2020
, “
Enabling Rapid Charging Lithium Metal Batteries Via Surface Acoustic Wave-Driven Electrolyte Flow
,”
Adv. Mater.
,
32
(
14
), p.
1907516
.
17.
Ding
,
F.
,
Zhang
,
C.
, and
Hu
,
X.
,
2005
, “
Effects of Ultrasound on Lithium Metal Rechargeable Battery Characteristics at High Charging Rate
,”
Electrochem. Commun.
,
7
(
5
), pp.
552
556
.
18.
Luo
,
Z.
,
Tang
,
Q.
, and
Hu
,
J.
,
2021
, “
Effect of Ultrasonic Excitation on Discharge Performance of a Button Zinc–Air Battery
,”
Micromachines (Basel)
,
12
(
7
), p.
792
.
19.
Dornbusch
,
D. A.
,
Hilton
,
R.
,
Gordon
,
M. J.
, and
Suppes
,
G. J.
,
2013
, “
Effects of Sonication on EIS Results for Zinc Alkaline Batteries
,”
ECS Electrochem. Lett.
,
2
(
9
), pp.
1
4
.
20.
Zhang
,
J.
,
Zhou
,
Z.
,
Wang
,
Y.
,
Chen
,
Q.
,
Hou
,
G.
, and
Tang
,
Y.
,
2022
, “
Ultrasonic-Assisted Enhancement of Lithium-Oxygen Battery
,”
Nano Energy
,
102
, p.
107655
.
21.
Im
,
G.
,
Barnes
,
D.
,
Popa
,
B. I.
,
Lu
,
W.
, and
Epureanu
,
B.
,
2023
, “
Ultrasound-Induced Impedance Reduction in Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
170
(
10
), p.
100519
.
22.
Khan
,
A. B.
, and
Choi
,
W.
,
2018
, “
Optimal Charge Pattern for the High-Performance Multistage Constant Current Charge Method for the Li-Ion Batteries
,”
IEEE Trans. Energy Convers.
,
33
(
3
), pp.
1132
1140
.
23.
Dung
,
L. R.
, and
Yen
,
J. H.
,
2010
, “
ILP-Based Algorithm for Lithium-Ion Battery Charging Profile
,”
IEEE International Symposium on Industrial Electronics
,
Oct. 3
, pp.
2286
2291
.
24.
Luo
,
Y. F.
,
Liu
,
Y. H.
, and
Wang
,
S. C.
,
2009
, “
Search for an Optimal Multistage Charging Pattern for Lithium-Ion Batteries Using the Taguchi Approach
,”
IEEE Region 10 Annual International Conference, Proceedings/TENCON
,
Singapore
,
Jan. 23–26
, pp
1
5
.
25.
Huang
,
J. W.
,
Liu
,
Y. H.
,
Wang
,
S. C.
, and
Yang
,
Z. Z.
,
2009
, “
Fuzzy-Control-Based Five-Step Li-Ion Battery Charger
,”
Proceedings of the International Conference on Power Electronics and Drive Systems
,
Taipei, Taiwan
,
Nov. 2–5
, pp.
1547
1551
.
26.
Liu
,
Y. H.
,
Teng
,
J. H.
, and
Lin
,
Y. C.
,
2005
, “
Search for an Optimal Rapid Charging Pattern for Lithium-Ion Batteries Using Ant Colony System Algorithm
,”
IEEE Trans. Ind. Electron.
,
52
(
5
), pp.
1328
1336
.
27.
Stroe
,
D. I.
,
Swierczynski
,
M.
,
Kær
,
S. K.
, and
Teodorescu
,
R.
,
2018
, “
Degradation Behavior of Lithium-Ion Batteries During Calendar Ageing—The Case of the Internal Resistance Increase
,”
IEEE Trans. Ind. Appl.
,
54
(
1
), pp.
517
525
.
28.
Barai
,
A.
,
Uddin
,
K.
,
Dubarry
,
M.
,
Somerville
,
L.
,
McGordon
,
A.
,
Jennings
,
P.
, and
Bloom
,
I.
,
2019
, “
A Comparison of Methodologies for the Non-invasive Characterisation of Commercial Li-Ion Cells
,”
Prog. Energy Combust. Sci.
,
72
, pp.
1
31
.
29.
Barai
,
A.
,
Uddin
,
K.
,
Widanage
,
W. D.
,
McGordon
,
A.
, and
Jennings
,
P.
,
2018
, “
A Study of the Influence of Measurement Timescale on Internal Resistance Characterisation Methodologies for Lithium-Ion Cells
,”
Sci. Rep.
,
8
(
1
), p.
21
.
30.
Ma
,
S.
,
Jiang
,
M.
,
Tao
,
P.
,
Song
,
C.
,
Wu
,
J.
,
Wang
,
J.
,
Deng
,
T.
, et al
,
2018
, “
Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review
,”
Prog. Nat. Sci.: Mater. Int.
,
28
(
6
), pp.
653
666
.
31.
Ji
,
Y.
,
Zhang
,
Y.
, and
Wang
,
C.-Y.
,
2013
, “
LI-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
.
32.
Wang
,
C. Y.
,
Zhang
,
G.
,
Ge
,
S.
,
Xu
,
T.
,
Ji
,
Y.
,
Yang
,
X. G.
, and
Leng
,
Y.
,
2016
, “
Lithium-Ion Battery Structure That Self-Heats at Low Temperatures
,”
Nature
,
529
(
7587
), pp.
515
518
.
33.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2002
, “
A New Approach Toward Improved Low Temperature Performance of Li-Ion Battery
,”
Electrochem. Commun.
,
4
(
11
), pp.
928
932
.
34.
Qin
,
Y.
,
Zuo
,
P.
,
Chen
,
X.
,
Yuan
,
W.
,
Huang
,
R.
,
Yang
,
X.
,
Du
,
J.
, et al
,
2022
, “
An Ultra-fast Charging Strategy for Lithium-Ion Battery at Low Temperature Without Lithium Plating
,”
J. Energy Chem.
,
72
, pp.
442
452
.
You do not currently have access to this content.