Abstract

Li0.33La0.56TiO3 (LLTO) perovskite-type solid-state electrolyte is one of the solid-state electrolytes, which is expected to achieve industrial production. However, research focused on a single factor and the simplification of the preparation process constrained the bulk conductivity of LLTO. This study systematically investigated the influence of process parameters on the intrinsic conductivity of perovskite-type solid-state electrolytes, focusing on pre-sintering temperature, lithium compensation, and sintering temperature, which are important processes for LLTO. The experimental results show that the optimization of process parameters can promote grain growth to a certain extent, increase the uniformity of grain size, and promote the densification of materials, and a certain degree of lithium compensation can effectively suppress the formation of secondary phases caused by lithium deficiency, thereby improving the intrinsic conductivity of the material. Among them, the material prepared under the conditions of a lithium compensation amount of 20 wt%, a pre-sintering temperature of 800 °C, and a sintering temperature of 1300 °C showed the highest bulk conductivity of 3.41 mS/cm at 50 °C, the highest bulk density of material reaching 4.95 g/cm3, which is 98.78% of the relative bulk density of LLTO solid-state electrolyte, and the lowest conductivity activation energy of 0.24 eV for the sample.

References

1.
Yuan
,
X. T.
,
Liu
,
B.
,
Mecklenburg
,
M.
, and
Li
,
Y. Z.
,
2023
, “
Ultrafast Deposition of Faceted Lithium Polyhedra by Outpacing SEI Formation
,”
Nature
,
620
(
7972
), pp.
86
91
.
2.
Wu
,
J.
,
Yang
,
J.
,
Liu
,
G.
,
Wang
,
Z.
,
Zhang
,
Z.
,
Yu
,
H.
,
Yao
,
X.
, and
Huang
,
X.
,
2022
, “
Review and Prospective of Solid-State Lithium Batteries in the Past Decade (2011–2021)
,”
Energy Storage Sci. Technol.
,
11
(
09
), pp.
2713
2745
. (in Chinese)
3.
Li
,
H.
, and
Xu
,
X. X.
,
2016
, “
R&D Vision and Strategies on Solid Lithium Batteries
,”
Energy Storage Sci. Technol.
,
5
(
5
), pp.
607
614
. (in Chinese)
4.
Li
,
H.
,
Wang
,
Z. X.
,
Chen
,
L. Q.
, and
Huang
,
X. J.
,
2009
, “
Research on Advanced Materials for Li-Ion Batteries
,”
Adv. Mater.
,
21
(
45
), pp.
4593
4607
.
5.
Lee
,
K.
,
Kazyak
,
E.
,
Wang
,
M. J.
,
Dasgupta
,
N. P.
, and
Sakamoto
,
J.
,
2022
, “
Analyzing Void Formation and Rewetting of Thin In Situ-Formed Li Anodes on LLZO
,”
Joule
,
6
(
11
), pp.
2547
2565
.
6.
Kim
,
J. S.
,
Yoon
,
G.
,
Kim
,
G.
,
Sugata
,
S.
,
Yashiro
,
N.
,
Suzuki
,
S.
,
Lee
,
M. J.
, et al
,
2023
, “
Surface Engineering of Inorganic Solid-State Electrolytes Via Interlayers Strategy for Developing Long-Cycling Quasi-All-Solid-State Lithium Batteries
,”
Nat. Commun.
,
14
(
1
), p.
782
.
7.
Gao
,
Z. H.
,
Sun
,
Z. H.
,
Fu
,
L.
,
Ye
,
L.
,
Zhang
,
Y.
,
Luo
,
W.
, and
Huang
,
W.
,
2018
, “
Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
,”
Adv. Mater.
,
30
(
17
), p.
1705702
.
8.
Yu
,
K.
,
Tian
,
Y.
,
Gu
,
R.
,
Jin
,
L.
,
Ma
,
R.
,
Sun
,
H.
,
Xu
,
Y.
,
Xu
,
Z.
, and
Wei
,
X.
,
2018
, “
Ionic Conduction, Colossal Permittivity and Dielectric Relaxation Behavior of Solid Electrolyte Li3xLa2/3–xTiO3 Ceramics
,”
J. Eur. Ceram. Soc.
,
38
(
13
), pp.
4483
4487
.
9.
Hu
,
X. T.
,
Cheng
,
X. T.
,
Qin
,
S. M.
,
Yan
,
G.
,
Malzbender
,
J.
,
Qiang
,
W. J.
, and
Huang
,
B. X.
,
2018
, “
Mechanical and Electrochemical Properties of Cubic and Tetragonal LixLa0.557TiO3 Perovskite Oxide Electrolytes
,”
Ceram. Int.
,
44
(
2
), pp.
1902
1908
.
10.
Cheng
,
X. B.
,
Yang
,
X. B.
,
Liu
,
Z. C.
,
Guo
,
J. X.
,
Jiang
,
J. X.
,
Jiang
,
F.
,
Xiong
,
X. S.
, et al
,
2024
, “
Electrochemically and Thermally Stable Inorganics–Rich Solid Electrolyte Interphase for Robust Lithium Metal Batteries
,”
Adv. Mater.
,
36
(
1
), p.
2307370
.
11.
Kim
,
S.
,
Yoon
,
G.
,
Jung
,
S. K.
,
Park
,
S. T.
,
Kim
,
J. S.
,
Yoon
,
K
,
Lee
,
S.
, and
Kang
,
K.
,
2023
, “
High-Power Hybrid Solid-State Lithium-Metal Batteries Enabled by Preferred Directional Lithium Growth Mechanism
,”
ACS Energy Lett.
,
8
(
1
), pp.
9
20
.
12.
Yang
,
T.
,
Li
,
Y.
, and
Chan
,
C. K.
,
2015
, “
Enhanced Lithium-Ion Conductivity in Lithium Lanthanum Titanate Solid Electrolyte Nanowires Prepared by Electrospinning
,”
J. Power Sources
,
287
, pp.
164
169
.
13.
Abhilash
,
K. P.
,
Selvin
,
K. P.
,
Nalini
,
B.
,
Nithyadharseni
,
P.
, and
Pillai
,
B. C.
,
2013
, “
Investigations on Pure and Ag Doped Lithium Lanthanum Titanate (LLTO) Nanocrystalline Ceramic Electrolytes for Rechargeable Lithium-Ion Batteries
,”
Ceram. Int.
,
39
(
2
), pp.
947
952
.
14.
Fu
,
K. K.
,
Gong
,
Y. H.
,
Liu
,
B. Y.
,
Zhu
,
Y. Z.
,
Xu
,
S. M.
,
Yao
,
Y. G.
,
Luo
,
W.
, et al
,
2017
, “
Toward Garnet Electrolyte-Based Li Metal Batteries: An Ultrathin, Highly Effective, Artificial Solid-State Electrolyte/Metallic Li Interface
,”
Sci. Adv.
,
3
(
4
), p.
1601659
.
15.
Kwon
,
W. J.
,
Kim
,
H.
,
Jung
,
K. N.
,
Cho
,
W.
,
Kim
,
S. H.
,
Lee
,
J. W.
, and
Park
,
J. W.
,
2014
, “
Enhanced Li+ Conduction in Perovskite Li3xLa2/3−x1/3−2xTiO3 Solid-Electrolytes Via Microstructural Engineering
,”
J. Mater. Chem. A
,
5
(
13
), pp.
6257
6262
.
16.
Teranishi
,
T.
,
Kouchi
,
A.
,
Hayashi
,
H.
, and
Kishimoto
,
A.
,
2014
, “
Dependence of the Conductivity of Polycrystalline Li0.33BaxLa0.56–2/3xTiO3 on Ba Loading
,”
Solid State Ionics
,
263
, pp.
33
38
.
17.
Zhang
,
S.
,
Zhao
,
H.
,
Guo
,
J.
,
Du
,
Z.
,
Wang
,
J.
, and
Świerczk
,
K.
,
2019
, “
Characterization of Sr-Doped Lithium Lanthanum Titanate With Improved Transport Properties
,”
Solid State Ionics
,
336
, pp.
39
46
.
18.
Zhou
,
X. G.
,
2022
, “
Preparation and Doping Modification of Li0.33La0.56TiO3 Solid Electrolyte
,”
M.Sc. thesis
,
Harbin Institute of Technology
,
Harbin, Heilongjiang, China
.
19.
Wu
,
Z. Z.
,
2023
, “
Doping Preparation and Performance Study of Perovskite-Type LLTO Solid-State Electrolytes
,”
M.Sc. thesis
,
Nanchang University
,
Nanchang, Jiangxi, China
.
20.
Peng
,
B. H.
,
Liu
,
Z. C.
,
Zhou
,
Q.
,
Xiong
,
X. S.
,
Xia
,
S.
,
Yuan
,
X. L.
,
Wang
,
F. X.
, et al
,
2023
, “
A Solid-State Electrolyte Based on Li0.95Na0.05FePO4 for Lithium Metal Batteries
,”
Adv. Mater.
,
36
(
2
), p.
2307142
.
21.
Borštnar
,
P.
,
Žuntar
,
J.
,
Spreitzer
,
M.
,
Dražič
,
G.
, and
Daneu
,
G.
,
2023
, “
Exaggerated Grain Growth and the Development of Coarse-Grained Microstructures in Lithium Lanthanum Titanate Perovskite Ceramics
,”
J. Eur. Ceram. Soc.
,
43
(
3
), pp.
1017
1027
.
22.
Feng
,
Y.
,
Wang
,
Y.
,
Gao
,
L.
,
He
,
Z.
,
Chen
,
K.
,
Li
,
Z.
,
He
,
H.
, and
Lin
,
Y.
,
2022
, “
Novel Fast Ionic Conductor Ceramic Composite Separator for High-Performance Safe Li-Ion Power Batteries
,”
J. Materiomics
,
8
(
6
), pp.
1184
1190
.
You do not currently have access to this content.