Abstract

In this study, four solid oxide fuel cell (SOFC) power plants, with natural gas (NG) as the fuel source, that account for long-term degradation were designed and simulated. The four candidate SOFC plants included a standalone SOFC plant, a standalone SOFC plant with a steam bottoming cycle, an SOFC/ (gas turbine) GT hybrid plant, and an SOFC/GT hybrid plant with a steam bottoming cycle. To capture dynamic behaviors caused by long-term SOFC degradation, this study employed a pseudo-stead-state approach that integrated real-time dynamic 1D SOFC models (degradation calculation embedded) with steady-state balance-of-plant models. Model simulations and eco-techno-economic analyses were performed over a 30-year plant lifetime using matlab simulink R2017a, aspen plus V12.1, and python 3.7.4. The results revealed that, while the standalone SOFC plant with a steam bottoming cycle provided the highest overall plant efficiency (65.0% LHV), it also had high SOFC replacement costs due to fast degradation. Instead, the SOFC/GT hybrid plant with a steam bottoming cycle was determined to be the best option, as it had the lowest levelized cost of electricity ($US 35.1/MWh) and the lowest cost of CO2 avoided (−$US100/ton CO2e).

References

1.
Adams
, II,
T. A.
,
Nease
,
J.
,
Tucker
,
D.
, and
Barton
,
P. I.
,
2013
, “
Energy Conversion With Solid Oxide Fuel Cell Systems: A Review of Concepts and Outlooks for the Short-and Long-Term
,”
Ind. Eng. Chem. Res.
,
52
(
9
), pp.
3089
3111
.
2.
Tucker
,
D.
,
Abreu-Sepulveda
,
M.
, and
Harun
,
N. F.
,
2014
, “
SOFC Lifetime Assessment in Gas Turbine Hybrid Power Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
5
), p.
051008
.
3.
Hagen
,
A.
,
Barfod
,
R.
,
Hendriksen
,
P. V.
,
Liu
,
Y.-L.
, and
Ramousse
,
S.
,
2006
, “
Degradation of Anode Supported SOFCs as a Function of Temperature and Current Load
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1165
A1171
.
4.
Da Silva
,
F. S.
, and
de Souza
,
T. M.
,
2017
, “
Novel Materials for Solid Oxide Fuel Cell Technologies: A Literature Review
,”
Int. J. Hydrog. Energy
,
42
(
41
), pp.
26020
26036
.
5.
Tucker
,
D.
,
VanOsdol
,
J.
,
Liese
,
E.
,
Lawson
,
L.
,
Zitney
,
S.
,
Gemmen
,
R.
,
Ford
,
J. C.
, and
Haynes
,
C.
,
2012
, “
Evaluation of Methods for Thermal Management in a Coal-Based SOFC Turbine Hybrid Through Numerical Simulation
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
4
), p.
041004
.
6.
Lai
,
H.
,
Harun
,
N. F.
,
Tucker
,
D.
, and
Adams
, II,
T. A.
,
2021
, “
Design and Eco-Technoeconomic Analyses of SOFC/GT Hybrid Systems Accounting for Long-Term Degradation Effects
,”
Int. J. Hydrog. Energy
,
46
(
7
), pp.
5612
5629
.
7.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
,
2007
, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
,
32
(
4
), pp.
406
417
.
8.
Toonssen
,
R.
,
Sollai
,
S.
,
Aravind
,
P. V.
,
Woudstra
,
N.
, and
Verkooijen
,
A. H. M.
,
2011
, “
Alternative System Designs of Biomass Gasification SOFC/GT Hybrid Systems
,”
Int. J. Hydrog. Energy
,
36
(
16
), pp.
10414
10425
.
9.
Zhang
,
B.
,
Maloney
,
D.
,
Farida Harun
,
N.
,
Zhou
,
N.
,
Pezzini
,
P.
,
Medam
,
A.
,
Hovsapian
,
R.
,
Bayham
,
S.
, and
Tucker
,
D.
,
2022
, “
Rapid Load Transition for Integrated Solid Oxide Fuel Cell—Gas Turbine (SOFC-GT) Energy Systems: A Demonstration of the Potential for Grid Response
,”
Energy Convers. Manag.
,
258
, p.
115544
.
10.
Calise
,
F.
,
Palombo
,
A.
, and
Vanoli
,
L.
,
2006
, “
Design and Partial Load Exergy Analysis of Hybrid SOFC–GT Power Plant
,”
J. Power Sources
,
158
(
1
), pp.
225
244
.
11.
Akkaya
,
A.
,
Sahin
,
B.
, and
Huseyinerdem
,
H.
,
2008
, “
An Analysis of SOFC/GT CHP System Based on Exergetic Performance Criteria
,”
Int. J. Hydrog. Energy
,
33
(
10
), pp.
2566
2577
.
12.
Huang
,
S.
,
Yang
,
C.
,
Chen
,
H.
,
Zhou
,
N.
, and
Tucker
,
D.
,
2022
, “
Coupling Impacts of SOFC Operating Temperature and Fuel Utilization on System Net Efficiency in Natural Gas Hybrid SOFC/GT System
,”
Case Stud. Therm. Eng.
,
31
, p.
101868
. .
13.
Behzadi
,
A.
,
Habibollahzade
,
A.
,
Zare
,
V.
, and
Ashjaee
,
M.
,
2019
, “
Multi-objective Optimization of a Hybrid Biomass-Based SOFC/GT/Double Effect Absorption Chiller/RO Desalination System With CO2 Recycle
,”
Energy Convers. Manag.
,
181
, pp.
302
318
.
14.
Calise
,
F.
,
d’Accadia
,
M. D.
,
Vanoli
,
L.
, and
Von Spakovsky
,
M. R.
,
2006
, “
Single-Level Optimization of a Hybrid SOFC–GT Power Plant
,”
J. Power Sources
,
159
(
2
), pp.
1169
1185
.
15.
Calise
,
F.
,
d’Accadia
,
M. D.
,
Vanoli
,
L.
, and
von Spakovsky
,
M. R.
,
2007
, “
Full Load Synthesis/Design Optimization of a Hybrid SOFC–GT Power Plant
,”
Energy
,
32
(
4
), pp.
446
458
.
16.
Fredriksson Möller
,
B.
,
Arriagada
,
J.
,
Assadi
,
M.
, and
Potts
,
I.
,
2004
, “
Optimisation of an SOFC/GT System With CO2-Capture
,”
J. Power Sources
,
131
(
1
), pp.
320
326
.
17.
Karimi
,
M. H.
,
Chitgar
,
N.
,
Emadi
,
M. A.
,
Ahmadi
,
P.
, and
Rosen
,
M. A.
,
2020
, “
Performance Assessment and Optimization of a Biomass-Based Solid Oxide Fuel Cell and Micro Gas Turbine System Integrated With an Organic Rankine Cycle
,”
Int. J. Hydrog. Energy
,
45
(
11
), pp.
6262
6277
.
18.
Chitgar
,
N.
, and
Emadi
,
M. A.
,
2021
, “
Development and Exergoeconomic Evaluation of a SOFC-GT Driven Multi-Generation System to Supply Residential Demands: Electricity, Fresh Water and Hydrogen
,”
Int. J. Hydrog. Energy
,
46
(
34
), pp.
17932
17954
.
19.
Kumar
,
P.
, and
Singh
,
O.
,
2019
, “
Thermoeconomic Analysis of SOFC-GT-VARS-ORC Combined Power and Cooling System
,”
Int. J. Hydrog. Energy
,
44
(
50
), pp.
27575
27586
.
20.
Santin
,
M.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A.
,
2010
, “
Thermoeconomic Analysis of SOFC-GT Hybrid Systems Fed by Liquid Fuels
,”
Energy
,
35
(
2
), pp.
1077
1083
.
21.
Vojdani
,
M.
,
Fakhari
,
I.
, and
Ahmadi
,
P.
,
2021
, “
A Novel Triple Pressure HRSG Integrated With MED/SOFC/GT for Cogeneration of Electricity and Freshwater: Techno-Economic-Environmental Assessment, and Multi-objective Optimization
,”
Energy Convers. Manag.
,
233
, p.
113876
.
22.
Parhizkar
,
T.
, and
Roshandel
,
R.
,
2017
, “
Long Term Performance Degradation Analysis and Optimization of Anode Supported Solid Oxide Fuel Cell Stacks
,”
Energy Convers. Manag.
,
133
, pp.
20
30
.
23.
Nakajo
,
A.
,
Mueller
,
F.
,
Brouwer
,
J.
,
Van herle
,
J.
, and
Favrat
,
D.
,
2012
, “
Progressive Activation of Degradation Processes in Solid Oxide Fuel Cell Stacks: Part II: Spatial Distribution of the Degradation
,”
J. Power Sources
,
216
, pp.
434
448
.
24.
Gao
,
S.
,
Li
,
J.
, and
Lin
,
Z.
,
2014
, “
Theoretical Model for Surface Diffusion Driven Ni-Particle Agglomeration in Anode of Solid Oxide Fuel Cell
,”
J. Power Sources
,
255
, pp.
144
150
.
25.
Neidhardt
,
J. P.
,
Fronczek
,
D. N.
,
Jahnke
,
T.
,
Danner
,
T.
,
Horstmann
,
B.
, and
Bessler
,
W. G.
,
2012
, “
A Flexible Framework for Modeling Multiple Solid, Liquid and Gaseous Phases in Batteries and Fuel Cells
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1528
A1542
.
26.
Ryan
,
E. M.
,
Xu
,
W.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2012
, “
A Damage Model for Degradation in the Electrodes of Solid Oxide Fuel Cells: Modeling the Effects of Sulfur and Antimony in the Anode
,”
J. Power Sources
,
210
, pp.
233
242
.
27.
Hansen
,
J. B.
,
2008
, “
Correlating Sulfur Poisoning of SOFC Nickel Anodes by a Temkin Isotherm
,”
Electrochem. Solid State Lett.
,
11
(
10
), p.
B178
.
28.
Cayan
,
F. N.
,
Pakalapati
,
S. R.
,
Celik
,
I.
,
Xu
,
C.
, and
Zondlo
,
J.
,
2012
, “
A Degradation Model for Solid Oxide Fuel Cell Anodes Due to Impurities in Coal Syngas: Part I Theory and Validation
,”
Fuel Cells
,
12
(
3
), pp.
464
473
.
29.
Divisek
,
J.
,
Wilkenhöner
,
R.
, and
Volfkovich
,
Y.
,
1999
, “
Structure Investigations of SOFC Anode Cermets Part I: Porosity Investigations
,”
J. Appl. Electrochem.
,
29
(
2
), pp.
153
163
.
30.
Hardjo
,
E.
,
Monder
,
D. S.
, and
Karan
,
K.
,
2011
, “
Numerical Modeling of Nickel-Impregnated Porous YSZ-Supported Anodes and Comparison to Conventional Composite Ni-YSZ Electrodes
,”
ECS Trans.
,
35
(
1
), pp.
1823
1832
.
31.
Gazzarri
,
J. I.
, and
Kesler
,
O.
,
2008
, “
Short-Stack Modeling of Degradation in Solid Oxide Fuel Cells: Part I. Contact Degradation
,”
J. Power Sources
,
176
(
1
), pp.
138
154
.
32.
Yang
,
Z.
,
Guo
,
M.
,
Wang
,
N.
,
Ma
,
C.
,
Wang
,
J.
, and
Han
,
M.
,
2017
, “
A Short Review of Cathode Poisoning and Corrosion in Solid Oxide Fuel Cell
,”
Int. J. Hydrog. Energy
,
42
(
39
), pp.
24948
24959
.
33.
Virkar
,
A. V.
,
2007
, “
A Model for Solid Oxide Fuel Cell (SOFC) Stack Degradation
,”
J. Power Sources
,
172
(
2
), pp.
713
724
.
34.
Coors
,
W. G.
,
O’Brien
,
J. R.
, and
White
,
J. T.
,
2009
, “
Conductivity Degradation of NiO-Containing 8YSZ and 10YSZ Electrolyte During Reduction
,”
Solid State Ion.
,
180
(
2–3
), pp.
246
251
.
35.
Larrain
,
D.
,
Van herle
,
J.
, and
Favrat
,
D.
,
2006
, “
Simulation of SOFC Stack and Repeat Elements Including Interconnect Degradation and Anode Reoxidation Risk
,”
J. Power Sources
,
161
(
1
), pp.
392
403
.
36.
Naeini
,
M.
,
Lai
,
H.
,
Cotton
,
J. S.
, and
Adams
, II,
T. A.
,
2021
, “
A Mathematical Model for Prediction of Long-Term Degradation Effects in Solid Oxide Fuel Cells
,”
Ind. Eng. Chem. Res.
,
60
(
3
), pp.
1326
1340
.
37.
Abreu-Sepulveda
,
M. A.
,
Harun
,
N. F.
,
Hackett
,
G.
,
Hagen
,
A.
, and
Tucker
,
D.
,
2015
, “
Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
2
), p.
021001
.
38.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
A Distributed Real-Time Model of Degradation in a Solid Oxide Fuel Cell, Part I: Model Characterization
,”
J. Power Sources
,
311
, pp.
175
181
.
39.
Wang
,
Z.
,
Chen
,
H.
,
Xia
,
R.
,
Han
,
F.
,
Ji
,
Y.
, and
Cai
,
W.
,
2022
, “
Energy, Exergy and Economy (3E) Investigation of a SOFC-GT-ORC Waste Heat Recovery System for Green Power Ships
,”
Therm. Sci. Eng. Prog.
,
32
, p.
101342
.
40.
Rosner
,
F.
,
Rao
,
A.
, and
Samuelsen
,
S.
,
2020
, “
Economics of Cell Design and Thermal Management in Solid Oxide Fuel Cells Under SOFC-GT Hybrid Operating Conditions
,”
Energy Convers. Manag.
,
220
, p.
112952
.
41.
Li
,
Z.
,
Zhang
,
X.
,
He
,
X.
,
Wu
,
G.
,
Tian
,
S.
,
Zhang
,
D.
,
Zhang
,
Q.
, and
Liu
,
Y.
,
2022
, “
Comparative Analysis of Thermal Economy of Two SOFC-GT-ST Triple Hybrid Power Systems With Carbon Capture and LNG Cold Energy Utilization
,”
Energy Convers. Manag.
,
256
, p.
115385
.
42.
Eisavi
,
B.
,
Chitsaz
,
A.
,
Hosseinpour
,
J.
, and
Ranjbar
,
F.
,
2018
, “
Thermo-Environmental and Economic Comparison of Three Different Arrangements of Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid Systems
,”
Energy Convers. Manag.
,
168
, pp.
343
356
.
43.
Peng
,
W.
,
Chen
,
H.
,
Liu
,
J.
,
Zhao
,
X.
, and
Xu
,
G.
,
2021
, “
Techno-Economic Assessment of a Conceptual Waste-to-Energy CHP System Combining Plasma Gasification, SOFC, Gas Turbine and Supercritical CO2 Cycle
,”
Energy Convers. Manag.
,
245
, p.
114622
.
44.
James
, III,
R. E.
,
Kearins
,
D.
,
Turner
,
M.
,
Woods
,
M.
,
Kuehn
,
N.
, and
Zoelle
,
A.
,
2019
,
Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, NETL-PUB-22638, NETL
.
45.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
A Distributed Real-Time Model of Degradation in a Solid Oxide Fuel Cell, Part II: Analysis of Fuel Cell Performance and Potential Failures
,”
J. Power Sources
,
327
, pp.
736
742
.
46.
Zaccaria
,
V.
,
Traverso
,
A.
, and
Tucker
,
D.
,
2015
, “
A Real-Time Degradation Model for Hardware in the Loop Simulation of Fuel Cell Gas Turbine Hybrid Systems
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
, Vol. 56673, p. V003T06A022.
47.
Rossi
,
I.
,
Zaccaria
,
V.
, and
Traverso
,
A.
,
2018
, “
Advanced Control for Clusters of SOFC/Gas Turbine Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
, p.
051703
.
48.
Nease
,
J.
, and
Adams
, II,
T. A.
,
2013
, “
Systems for Peaking Power With 100% CO2 Capture by Integration of Solid Oxide Fuel Cells With Compressed Air Energy Storage
,”
J. Power Sources
,
228
, pp.
281
293
.
49.
Adams
, II,
T. A.
, and
Barton
,
P. I.
,
2010
, “
High-Efficiency Power Production From Coal With Carbon Capture
,”
AIChE J.
,
56
(
12
), pp.
3120
3136
.
50.
Adams
, II,
T. A.
,
Hoseinzade
,
L.
,
Madabhushi
,
P. B.
, and
Okeke
,
I. J.
,
2017
, “
Comparison of CO2 Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study
,”
Processes
,
5
(
3
), p.
44
.
51.
SGT6-9000HL (405 MW) Heavy-Duty Gas Turbine
,” Siemenscom Glob. Available: https://new.siemens.com/global/en/products/energy/power-generation/gas-turbines/sgt6-9000hl.html, Accessed February 23, 2020.
52.
Siemens SGT5-2000/3000/4000 Series | PowerWeb
.” Available: http://www.fi-powerweb.com/Engine/Industrial/Siemens-SGT5-2000-3000-4000.html, Accessed February 23, 2020.
53.
Rath
,
L. K.
,
Chou
,
V. H.
, and
Kuehn
,
N. J.
,
2011
,
Assessment of Hydrogen Production With CO2 Capture Volume 1: Baseline State-of-the-Art Plants (Final Report), DOE/NETL-2011/1434-Rev.01, National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR; Booz Allen Hamilton, Inc., McLean, VA
.
54.
U.S. Natural Gas Electric Power Price (Dollars Per Thousand Cubic Feet)
.” Available: https://www.eia.gov/dnav/ng/hist/n3045us3m.htm. Accessed July 19, 2022.
55.
U.S. Bureau of Labor Statistics
,
1952
, “
Consumer Price Index for All Urban Consumers: Utility (Piped) Gas Service in U.S. City Average
,” FRED Fed. Reserve Bank St. Louis. Available: https://fred.stlouisfed.org/series/CUSR0000SEHF02, Accessed July 19, 2022.
56.
Canada
,
E.
, and
C
,
C.
,
2021
, “
Update to the Pan-Canadian Approach to Carbon Pollution Pricing 2023-2030
.” Available: https://www.canada.ca/en/environment-climate-change/services/climate-change/pricing-pollution-how-it-will-work/carbon-pollution-pricing-federal-benchmark-information/federal-benchmark-2023-2030.html, Accessed July 26, 2022.
You do not currently have access to this content.