Abstract

Reverse electrodialysis-multi-effect distillation (RED-MED) heat engine has received increasing attention in recent years, due to its ability to convert low temperature waste heat into salinity gradient energy, and then extract electric power from it. In this work, the RED-MED coupled system was studied with a mathematical model, which was validated by our experimental results. The influences of RED channel length and the feed flowrate on the performance of the coupled system were studied. Furthermore, in the literature, only one of the two streams leaving RED, i.e., either the dilute or the concentrate, is split and partly mixed with another stream before being treated in MED. In this paper, a modified scheme is proposed, in which both the two streams were split, i.e., only a fraction of the concentrate solution was mixed with a fraction of the dilute. The purpose of the modification is to further reduce the total flowrate in MED. After the modification, both the energy efficiency and the heat exchange area requirement of MED increase. The optimum value of the split fraction was discussed. Results imply that while the studies reported in the literature mainly focus on the aspects closely related to the RED section, attention should also be paid to the overall scheme design of the RED-MED coupled system.

References

1.
Catrini
,
P.
,
Cipollina
,
A.
,
Micale
,
G.
,
Piacentino
,
A.
, and
Tamburini
,
A.
,
2021
, “
Potential Applications of Salinity Gradient Power-Heat Engines for Recovering Low-Temperature Waste Heat in Cogeneration Plants
,”
Energy Convers. Manage.
,
237
, p.
114135
.
2.
Long
,
R.
,
Li
,
B.
,
Liu
,
Z.
, and
Liu
,
W.
,
2017
, “
Hybrid Membrane Distillation-Reverse Electrodialysis Electricity Generation System to Harvest Low-Grade Thermal Energy
,”
J. Membr. Sci.
,
525
, pp.
107
115
.
3.
Liu
,
Z.
,
Lu
,
D.
,
Bai
,
Y.
,
Kong
,
X.
,
Wen
,
L.
, and
Gong
,
M.
,
2021
, “
Progress on the Regeneration Unit of a Reverse Electrodialysis Heat Engine (in Chinese)
,”
Chin. Sci. Bull.
,
66
(
30
), pp.
3811
3821
.
4.
Garcia
,
I. S.
,
Garcia
,
F. R.
,
Carril
,
C. J.
, and
Garcia
,
I. D.
,
2017
, “
A Review of Thermodynamic Cycles Used in Low Temperature Recovery Systems Over the Last Two Years
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
760
767
.
5.
Papapetrou
,
M.
,
Kosmadakis
,
G.
,
Cipollina
,
A.
,
Commare
,
L. U.
, and
Micale
,
G.
,
2018
, “
Industrial Waste Heat: Estimation of the Technically Available Resource in the EU Per Industrial Sector, Temperature Level and Country
,”
Appl. Therm. Eng.
,
138
, pp.
207
216
. 16.10.1016/j.applthermaleng.2018.04.043
6.
Ortiz-Imedio
,
R.
,
Gomez-Coma
,
L.
,
Fallanza
,
M.
,
Ortiz
,
A.
,
Ibañez
,
R.
, and
Ortiz
,
I.
,
2019
, “
Comparative Performance of Salinity Gradient Power-Reverse Electrodialysis Under Different Operating Conditions
,”
Desalination
,
457
, pp.
8
21
.
7.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2010
, “
Reverse Electrodialysis: Evaluation of Suitable Electrode Systems
,”
J. Appl. Electrochem.
,
40
(
8
), pp.
1461
1474
.
8.
Hu
,
J.
,
Xu
,
S.
,
Wu
,
X.
,
Wu
,
D.
,
Jin
,
D.
,
Wang
,
P.
,
Xu
,
L.
, and
Leng
,
Q.
,
2019
, “
Exergy Analysis for the Multi-Effect Distillation—Reverse Electrodialysis Heat Engine
,”
Desalination
,
467
, pp.
158
169
.
9.
Papapetrou
,
M.
,
Kosmadakis
,
G.
,
Giacalone
,
F.
,
Ortega-Delgado
,
B.
,
Cipollina
,
A.
,
Tamburini
,
A.
, and
Micale
,
G.
,
2019
, “
Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion Using a Reverse Electrodialysis–Multi-Effect Distillation System
,”
Energies
,
12
(
17
), p.
3206
.
10.
Daniilidis
,
A.
,
Herber
,
R.
, and
Vermaas
,
D. A.
,
2014
, “
Upscale Potential and Financial Feasibility of a Reverse Electrodialysis Power Plant
,”
Appl. Energy
,
119
, pp.
257
265
.
11.
Tamburini
,
A.
,
Tedesco
,
M.
,
Cipollina
,
A.
,
Micale
,
G.
,
Ciofalo
,
M.
,
Papapetrou
,
M.
,
Van Baak
,
W.
, and
Piacentino
,
A.
,
2017
, “
Reverse Electrodialysis Heat Engine for Sustainable Power Production
,”
Appl. Energy
,
206
, pp.
1334
1353
.
12.
Ortega-Delgado
,
B.
,
Giacalone
,
F.
,
Cipollina
,
A.
,
Papapetrou
,
M.
,
Kosmadakis
,
G.
,
Tamburini
,
A.
, and
Micale
,
G.
,
2019
, “
Boosting the Performance of a Reverse Electrodialysis–Multi-Effect Distillation Heat Engine by Novel Solutions and Operating Conditions
,”
Appl. Energy
,
253
, p.
113489
.
13.
Hu
,
J.
,
Xu
,
S.
,
Wu
,
X.
,
Wu
,
D.
,
Jin
,
D.
,
Wang
,
P.
, and
Leng
,
Q.
,
2018
, “
Theoretical Simulation and Evaluation for the Performance of the Hybrid Multi-Effect Distillation-Reverse Electrodialysis Power Generation System
,”
Desalination
,
443
, pp.
172
183
.
14.
Liu
,
Z.
,
Lu
,
D.
,
Bai
,
Y.
,
Zhang
,
J.
, and
Gong
,
M.
,
2022
, “
Energy and Exergy Analysis of Heat to Salinity Gradient Power Conversion in Reverse Electrodialysis Heat Engine
,”
Energy Convers. Manage.
,
252
, p.
115068
.
15.
Palenzuela
,
P.
,
Micari
,
M.
,
Ortega-Delgado
,
B.
,
Giacalone
,
F.
,
Zaragoza
,
G.
,
Alarcón-Padilla
,
D.
,
Cipollina
,
A.
,
Tamburini
,
A.
, and
Micale
,
G.
,
2018
, “
Performance Analysis of a RED-MED Salinity Gradient Heat Engine
,”
Energies
,
11
(
12
), p.
3385
.
16.
Ortega-Delgado
,
B.
,
Giacalone
,
F.
,
Catrini
,
P.
,
Cipollina
,
A.
,
Piacentino
,
A.
,
Tamburini
,
A.
, and
Micale
,
G.
,
2019
, “
Reverse Electrodialysis Heat Engine With Multi-Effect Distillation: Exergy Analysis and Perspectives
,”
Energy Convers. Manage.
,
194
, pp.
140
159
.
17.
Tedesco
,
M.
,
Cipollina
,
A.
,
Tamburini
,
A.
,
Bogle
,
I. D. L.
, and
Micale
,
G.
,
2015
, “
A Simulation Tool for Analysis and Design of Reverse Electrodialysis Using Concentrated Brines
,”
Chem. Eng. Res. Des.
,
93
, pp.
441
456
.
18.
Veerman
,
J.
,
Post
,
J. W.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2008
, “
Reducing Power Losses Caused by Ionic Shortcut Currents in Reverse Electrodialysis Stacks by a Validated Model
,”
J. Membr. Sci.
,
310
(
1–2
), pp.
418
430
.
19.
Pitzer
,
K. S.
,
Peiper
,
J. C.
, and
Busey
,
R. H.
,
1984
, “
Thermodynamic Properties of Aqueous Sodium Chloride Solutions
,”
J. Phys. Chem. Ref. Data
,
13
(
1
), pp.
1
102
.
20.
El-Dessouky
,
H. T.
,
Ettouney
,
H. M.
, and
Al-Juwayhel
,
F.
,
2000
, “
Multiple Effect Evaporation-Vapour Compression Desalination Processes
,”
Chem. Eng. Res. Des.
,
78
(
4
), pp.
662
676
.
21.
Zhang
,
F.
,
Xu
,
S.
,
Feng
,
D.
,
Chen
,
S.
,
Du
,
R.
,
Su
,
C.
, and
Shen
,
B.
,
2017
, “
A Low-Temperature Multieffect Desalination System Powered by the Cooling Water of a Diesel Engine
,”
Desalination
,
404
, pp.
112
120
.
22.
Al-Najem
,
N. M.
,
Darwish
,
M. A.
, and
Youssef
,
F. A.
,
1997
, “
Thermovapor Compression Desalters: Energy and Availability-Analysis of Single- and Multi-Effect Systems
,”
Desalination
,
110
(
3
), pp.
223
238
.
You do not currently have access to this content.