Abstract

Solid oxide fuel cell (SOFC) is a clean and efficient energy utilization technology. Partial oxidation reforming (POX) can be used to simplify the SOFC system structure, but its lower hydrogen production rate deteriorates the system performance. A wise method may be combining anode off gas recirculation (AOGR) and cathode off gas recirculation (COGR) with POX. Thus, their influence on the coupled system of intermediate temperature SOFC and POX is researched in detail in this paper. Results show that the reforming process gradually changes from exothermic to endothermic as AOGR rate increases. Meanwhile, its oxygen demand declines sharply and the process can even be self-sustained without external air input at the AOGR rate of 0.5 and 0.6. The application of AOGR can improve electrical efficiency by up to 51%, but at the expense of thermal efficiency. Excessive AOGR rates will result in decreased cell voltage and insufficient energy supply to the after-burner, so it should be restricted within a reasonable range and the best recommended value is 0.5. The application of COGR has little effect on fuel line parameters, so it causes little deterioration in electrical efficiency while improving thermal efficiency. Besides, the cell voltage is also insensitive to it. The combination of AOGR and COGR can obtain better fuel economy and larger cogeneration scale simultaneously at the cost of a tiny electrical output power, while an optimal balance between three efficiencies is also achieved.

References

1.
Nowotny
,
J.
,
Dodson
,
J.
,
Fiechter
,
S.
,
Gür
,
T. M.
,
Kennedy
,
B.
,
Macyk
,
W.
,
Bak
,
T.
,
Sigmund
,
W.
,
Yamawaki
,
M.
, and
Rahman
,
K. A.
,
2018
, “
Towards Global Sustainability: Education on Environmentally Clean Energy Technologies
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
2541
2551
.
2.
Ellabban
,
O.
,
Abu-Rub
,
H.
, and
Blaabjerg
,
F.
,
2014
, “
Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology
,”
Renew. Sustain. Energy Rev.
,
39
, pp.
748
764
.
3.
Zhu
,
P.
,
Yao
,
J.
,
Qian
,
C.
,
Yang
,
F.
,
Porpatham
,
E.
,
Zhang
,
Z.
, and
Wu
,
Z.
,
2020
, “
High-Efficiency Conversion of Natural Gas Fuel to Power by an Integrated System of SOFC, HCCI Engine, and Waste Heat Recovery: Thermodynamic and Thermo-Economic Analyses
,”
Fuel
,
275
, p.
117883
.
4.
Chung
,
T. D.
,
Chyou
,
Y. P.
,
Hong
,
W. T.
,
Cheng
,
Y. N.
, and
Lin
,
K. F.
,
2007
, “
Influence of Energy Recuperation on the Efficiency of a Solid Oxide Fuel Cell Power System
,”
Energy Fuels
,
21
(
1
), pp.
314
321
.
5.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
,
High Temperature Solid Oxide Fuel Cells: Fundamentals Design and Applications
,
Elsevier
,
New York
.
6.
Wen
,
H.
,
Ordonez
,
J. C.
, and
Vargas
,
J. V. C.
,
2013
, “
Optimization of Single SOFC Structural Design for Maximum Power
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
12
25
.
7.
Hassmann
,
K.
,
2001
, “
SOFC Power Plants, the Siemens-Westinghouse Approach
,”
Fuel Cells
,
1
(
1
), pp.
78
84
.
8.
O’Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2016
,
Fuel Cell Fundamentals
,
John Wiley & Sons
,
Hoboken, NJ
.
9.
Chung
,
T. D.
,
Hong
,
W. T.
,
Chyou
,
Y. P.
,
Yu
,
D. D.
,
Lin
,
K. F.
, and
Lee
,
C. H.
,
2008
, “
Efficiency Analyses of Solid Oxide Fuel Cell Power Plant Systems
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
933
941
.
10.
Faro
,
M. L.
,
Antonucci
,
V.
,
Antonucci
,
P. L.
, and
Aricò
,
A. S.
,
2012
, “
Fuel Flexibility: A Key Challenge for SOFC Technology
,”
Fuel
,
102
, pp.
554
559
.
11.
Zhu
,
T.
,
Yang
,
Z.
, and
Han
,
M.
,
2015
, “
Performance Evaluation of Solid Oxide Fuel Cell With In-Situ Methane Reforming
,”
Fuel
,
161
, pp.
168
173
.
12.
Minh
,
N. Q.
,
1993
, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
,
76
(
3
), pp.
563
588
.
13.
Corigliano
,
O.
, and
Fragiacomo
,
P.
,
2017
, “
Numerical Modeling of an Indirect Internal CO2 Reforming Solid Oxide Fuel Cell Energy System Fed by Biogas
,”
Fuel
,
196
, pp.
352
361
.
14.
Gorte
,
R. J.
,
Park
,
S.
, and
Vohs
,
J. M.
,
2000
, “
Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell
,”
Nature
,
404
(
6775
), pp.
265
267
.
15.
Timmermann
,
H.
,
Sawady
,
W.
,
Campbell
,
D.
,
Weber
,
A.
,
Reimert
,
R.
, and
Ivers-Tiff´e
,
E.
,
2008
, “
Coke Formation and Degradation in SOFC Operation With a Model Reformate From Liquid Hydrocarbons
,”
J. Electrochem. Soc.
,
155
(
4
), pp.
356
359
.
16.
Mamak
,
M.
,
Coombs
,
N.
, and
Ozin
,
G. A.
,
2002
, “
Practical Solid Oxide Fuel Cells With Anodes Derived From Self-Assembled Mesoporous-NiO-YSZ
,”
Chem. Commun.
,
2
(
20
), pp.
2300
2301
.
17.
Winkler
,
W.
, and
Lorenz
,
H.
,
2002
, “
Design Studies of Mobile Applications With SOFC-Heat Engine Modules
,”
J. Power Sources
,
106
(
1–2
), pp.
338
343
.
18.
Halinen
,
M.
,
Thomann
,
O.
, and
Kiviaho
,
J.
,
2014
, “
Experimental Study of SOFC System Heat-Up Without Safety Gases
,”
Int. J. Hydrogen Energy
,
39
(
1
), pp.
552
561
.
19.
Peters
,
R.
,
Deja
,
R.
,
Blum
,
L.
,
Pennanen
,
J.
,
Kiviaho
,
J.
, and
Hakala
,
T.
,
2013
, “
Analysis of Solid Oxide Fuel Cell System Concepts With Anode Recycling
,”
Int. J. Hydrogen Energy
,
38
(
16
), pp.
6809
6820
.
20.
Torii
,
R.
,
Tachikawa
,
Y.
,
Sasaki
,
K.
, and
Ito
,
K.
,
2016
, “
Anode Gas Recirculation for Improving the Performance and Cost of a 5-kW Solid Oxide Fuel Cell System
,”
J. Power Sources
,
325
, pp.
229
237
.
21.
Tsai
,
T.
,
Troskialina
,
L.
,
Majewski
,
A.
, and
Steinberger-Wilckens
,
R.
,
2016
, “
Methane Internal Reforming in Solid Oxide Fuel Cells With Anode Off-Gas Recirculation
,”
Int. J. Hydrogen Energy
,
41
(
1
), pp.
553
561
.
22.
Lyu
,
Z. W.
, and
Han
,
M. F.
,
2019
, “
Optimization of Anode Off-Gas Recycle Ratio for a Natural Gas-Fueled 1 kW SOFC CHP System
,”
ECS Trans.
,
91
(
1
), pp.
1591
1600
.
23.
Liso
,
V.
,
Olesen
,
A. C.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2011
, “
Performance Comparison Between Partial Oxidation and Methane Steam Reforming Processes for Solid Oxide Fuel Cell (SOFC) Micro Combined Heat and Power (CHP) System
,”
Energy
,
36
(
7
), pp.
4216
4226
.
24.
Kushi
,
T.
,
2016
, “
Performance and Durability Evaluation of Dry Reforming in Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
41
(
39
), pp.
17567
17576
.
25.
Barelli
,
L.
,
Bidini
,
G.
,
Cinti
,
G.
,
Gallorini
,
F.
, and
Pöniz
,
M.
,
2017
, “
SOFC Stack Coupled With Dry Reforming
,”
Appl. Energy
,
192
, pp.
498
507
.
26.
Kushi
,
T.
,
2017
, “
Heat Balance of Dry Reforming in Solid Oxide Fuel Cell Systems
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
11779
11787
.
27.
Barelli
,
L.
, and
Ottaviano
,
A.
,
2014
, “
Solid Oxide Fuel Cell Technology Coupled With Methane Dry Reforming: A Viable Option for High Efficiency Plant With Reduced CO2 Emissions
,”
Energy
,
71
, pp.
118
129
.
28.
Peters
,
R.
,
Deja
,
R.
,
Engelbracht
,
M.
,
Frank
,
M.
,
Nguyen
,
V. N.
,
Blum
,
L.
, and
Stolten
,
D.
,
2016
, “
Efficiency Analysis of a Hydrogen-Fueled Solid Oxide Fuel Cell System With Anode Off-Gas Recirculation
,”
J. Power Sources
,
328
, pp.
105
113
.
29.
Liso
,
V.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2014
, “
Influence of Anodic Gas Recirculation on Solid Oxide Fuel Cells in a Micro Combined Heat and Power System
,”
Sustain. Energy Technol. Assess.
,
8
, pp.
99
108
.
30.
Lyu
,
Z. W.
,
Meng
,
H.
,
Zhu
,
J. Z.
,
Han
,
M.
,
Sun
,
Z.
,
Xue
,
H.
,
Zhao
,
Y.
, and
Zhang
,
F.
,
2020
, “
Comparison of Off-Gas Utilization Modes for Solid Oxide Fuel Cell Stacks Based on a Semi-Empirical Parametric Model
,”
Appl. Energy
,
270
, p.
115220
.
31.
Technical Notes
,”
2020
, Cycle-Tempo Manual Volumes, Release 5.15, https://asimptote.com/files/CTManuals/Technical%20Notes.pdf
32.
Groot
,
A. D.
,
2004
, “
Advanced Exergy Analysis of High Temperature Fuel Cell Systems
,”
Ph.D. dissertation
,
Delft University of Technology
,
Delft, The Netherlands
.
33.
Leah
,
R. T.
,
Brandon
,
N. P.
, and
Aguiar
,
P.
,
2005
, “
Modelling of Cells, Stacks and Systems Based Around Metal-Supported Planar IT-SOFC Cells With CGO Electrolytes Operating at 500–600 °C
,”
J. Power Sources
,
145
(
2
), pp.
336
352
.
34.
Fernandes
,
A.
,
Brabandt
,
J.
,
Posdziech
,
O.
,
Saadabadi
,
A.
,
Recalde
,
M.
,
Fan
,
L.
,
Promes
,
E.
,
Liu
,
M.
,
Woudstra
,
T.
, and
Aravind
,
P.
,
2018
, “
Design, Construction, and Testing of a Gasifier-Specific Solid Oxide Fuel Cell System
,”
Energies
,
11
(
8
), p.
1985
.
35.
Cinti
,
G.
, and
Hemmes
,
K.
,
2011
, “
Integration of Direct Carbon Fuel Cells With Concentrated Solar Power
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10198
10208
.
36.
Seo
,
H.-K.
,
Park
,
W.-S.
, and
Lim
,
H. C.
,
2016
, “
The Efficiencies of Internal Reforming Molten Carbonate Fuel Cell Fueled by Natural Gas and Synthetic Natural Gas From Coal
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
1
), p.
011005
.
37.
Ghadamian
,
H.
,
Hamidi
,
A. A.
,
Farzaneh
,
H.
, and
Ozgoli
,
H. A.
,
2012
, “
Thermo-Economic Analysis of Absorption Air Cooling System for Pressurized Solid Oxide Fuel Cell/Gas Turbine Cycle
,”
J. Renew. Sustain. Energy
,
4
(
4
), p.
43115
.
38.
Cinti
,
G.
,
Bidini
,
G.
, and
Hemmes
,
K.
,
2019
, “
Comparison of the Solid Oxide Fuel Cell System for Micro CHP Using Natural Gas With a System Using a Mixture of Natural Gas and Hydrogen
,”
Appl. Energy
,
238
, pp.
69
77
.
39.
Selvam
,
K.
,
Rokni
,
M. M.
,
Komatsu
,
Y.
,
Sciazko
,
A.
,
Kaneko
,
S.
, and
Shikazono
,
N.
,
2022
, “
Design Point Analyses of Solid Oxide Fuel Cell-Steam Cycle Combined System: Effects of Fuel Reforming and Bottoming Cycle Steam Parameters
,”
Int. J. Energy Res.
,
46
(
8
), pp.
10844
10863
.
You do not currently have access to this content.