Abstract

Benchmarks are provided for the evaluation of the effective coefficient for species diffusion, or electrical/thermal conduction, in structured porous media. The cases considered corresponding to doubly periodic rows of circular cylinders, for which a power series solution has been previously obtained, from complex variable theory. Both inline and staggered geometries are considered for three common configurations: inline-square, rotated-square, and equilateral geometries. From these mathematical solutions, values for the effective conduction/diffusion coefficient are readily constructed. The results are presented in terms of correlations for the ratio of effective-to-bulk conductivity/diffusivity or microstructural parameter, as a function of porosity. It is shown that near identical results with the present analytical analysis are obtained using calculations based on a finite-volume method and also with a previous mathematical analysis for the case of inline-square geometry. The present analytical solutions are also compared with two well-known correlations for random porous media, based on effective medium and percolation theory. It is shown that agreement with the analytical solution is not in general particularly good and depends on the choice of fitting parameters. The present results may be used as canonical data for comparative studies with numerical procedures to enumerate microstructural parameters for arbitrary-shaped occlusions in random geometries.

References

1.
Kulikovsky
,
A. A.
,
2010
,
Analytical Modelling of Fuel Cells
,
Elsevier
,
New York
.
2.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
3.
Epstein
,
N.
,
1989
, “
On Tortuosity and the Tortuosity Factor in Flow and Diffusion Through Porous-Media
,”
Chem. Eng. Sci.
,
44
(
3
), pp.
777
779
.
4.
Archie
,
G. E.
,
1942
, “
The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics
,”
Trans. AIME
,
146
(
1
), pp.
54
62
.
5.
Bruggeman
,
D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen. I. Dielektrizitätskonstanten Und Leitfähigkeiten Der Mischkörper Aus Isotropen Substanzen
,”
Ann. Phys.
,
416
(
7
), pp.
636
664
.
6.
Tjaden
,
B.
,
Cooper
,
S. J.
,
Brett
,
D. J. L.
,
Kramer
,
D.
, and
Shearing
,
P. R.
,
2016
, “
On the Origin and Application of the Bruggeman Correlation for Analysing Transport Phenomena in Electrochemical Systems
,”
Curr. Opin. Chem. Eng.
,
12
, pp.
44
51
.
7.
Gaiselmann
,
G.
,
Neumann
,
M.
,
Schmidt
,
V.
,
Pecho
,
O.
,
Hocker
,
T.
, and
Holzer
,
L.
,
2014
, “
Quantitative Relationships Between Microstructure and Effective Transport Properties Based on Virtual Materials Testing
,”
AIChE J.
,
60
(
6
), pp.
1983
1999
.
8.
Tomadakis
,
M. M.
, and
Sotirchos
,
S. V.
,
1993
, “
Ordinary and Transition Regime Diffusion in Random Fiber Structures
,”
AIChE J.
,
39
(
3
), pp.
397
412
.
9.
Beale
,
S. B.
,
Choi
,
H. W.
,
Pharoah
,
J. G.
,
Roth
,
H. K.
,
Jasak
,
H.
, and
Jeon
,
D. H.
,
2016
, “
Open-Source Computational Model of a Solid Oxide Fuel Cell
,”
Comput. Phys. Commun.
,
200
, pp.
15
26
.
10.
Ferziger
,
J. H.
,
Perić
,
M.
, and
Street
,
R.L.
,
2020
,
Computational Methods for Fluid Dynamics
, 4th ed.,
Springer Nature
,
Switzerland
.
11.
Mu
,
D.
,
Liu
,
Z.-S.
,
Huang
,
C.
, and
Djilali
,
N.
,
2007
, “
Prediction of the Effective Diffusion Coefficient in Random Porous Media Using the Finite Element Method
,”
J. Porous Mater.
,
14
(
1
), pp.
49
54
.
12.
Choi
,
H. W.
,
Berson
,
A.
,
Pharoah
,
J. G.
, and
Beale
,
S. B.
,
2011
, “
Effective Transport Properties of the Porous Electrodes in Solid Oxide Fuel Cells
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
A2
), pp.
183
197
.
13.
James
,
J. P.
,
Choi
,
H. W.
, and
Pharoah
,
J. G.
,
2012
, “
X-Ray Computed Tomography Reconstruction and Analysis of Polymer Electrolyte Membrane Fuel Cell Porous Transport Layers
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18216
18230
.
14.
García-Salaberri
,
P. A.
,
Zenyuk
,
I. V.
,
Shum
,
A. D.
,
Hwang
,
G.
,
Vera
,
M.
,
Weber
,
A. Z.
, and
Gostick
,
J. T.
,
2018
, “
Analysis of Representative Elementary Volume and Through-Plane Regional Characteristics of Carbon-Fiber Papers: Diffusivity, Permeability and Electrical/Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
127
(
Part B
), pp.
687
703
.
15.
Batchelor
,
G. K.
,
1974
, “
Transport Properties of Two-Phase Materials With Random Structure
,”
Annu. Rev. Fluid Mech.
,
6
(
1
), pp.
227
255
.
16.
Froning
,
D.
,
Gaiselmann
,
G.
,
Reimer
,
U.
,
Brinkmann
,
J.
,
Schmidt
,
V.
, and
Lehnert
,
W.
,
2014
, “
Stochastic Aspects of Mass Transport in Gas Diffusion Layers
,”
Transp. Porous Media
,
103
(
3
), pp.
469
495
.
17.
Beale
,
S. B.
,
1999
, “
Potential Flow in Tube Banks
,”
Trans. Can. Soc. Mech. Eng.
,
23
(
3–4
), pp.
353
359
.
18.
Beale
,
S. B.
,
1993
, “Potential Flow in In-Line and Staggered Tube Banks,” Report No. IME-CRE-TR-006, National Research Council, Ottawa.
19.
Beale
,
S. B.
,
1993
, “
Fluid Flow and Heat Transfer in Tube Banks
,”
PhD thesis
,
Imperial College of Science, Technology and Medicine
,
London
.
20.
Beale
,
S. B.
, and
Spalding
,
D. B.
,
1998
, “
Numerical Study of Fluid Flow and Heat Transfer in Tube Banks With Stream-Wise Periodic Boundary Conditions
,”
Trans. Can. Soc. Mech. Eng.
,
22
(
4a
), pp.
397
416
.
21.
Beale
,
S. B.
, and
Spalding
,
D. B.
,
1999
, “
A Numerical Study of Unsteady Fluid Flow in In-Line and Staggered Tube Banks
,”
J. Fluids Struct.
,
13
(
6
), pp.
723
754
.
22.
Greenshields
,
C. J.
,
2018
, “Openfoam User Guide Version 6,” The OpenFOAM Foundation, https://openfoam.org.
23.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Mechanics
,
Cambridge University Press
,
London
.
24.
Rayleigh
,
J. W.
,
1892
, “
On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
34
(
211
), pp.
481
502
.
25.
Perrins
,
W. T.
,
McKenzie
,
D. R.
, and
McPhedran
,
R. C.
,
1979
, “
Transport Properties of Regular Arrays of Cylinders
,”
Proc. R. Soc. London, Ser. A
,
369
(
1737
), pp.
207
225
.
26.
McPhedran
,
R. C.
,
1986
, “Transport Properties of Cylinder Pairs and of the Square Array of Cylinders,”
Proc. R. Soc. London, Ser. A
,
408
(
1834
), pp.
31
43
.
27.
Heinrich
,
J. C.
,
Poirier
,
D. R.
, and
Nagelhout
,
D. F.
,
1996
, “
Mesh Generation and Flow Calculations in Highly Contorted Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
133
(
1–2
), pp.
79
92
.
28.
Ingram
,
D. M.
,
Causon
,
D. M.
, and
Mingham
,
C. G.
,
2003
, “
Developments in Cartesian Cut Cell Methods
,”
Math. Comput. Simul.
,
61
(
3–6
), pp.
561
572
.
29.
Choi
,
H.-W.
,
Berson
,
A.
,
Kenney
,
B.
,
Pharoah
,
J.
,
Beale
,
S.B.
, and
Karan
,
K.
,
2009
, “
Effective Transport Coefficients for Porous Microstructures in Solid Oxide Fuel Cells
,”
ECS Trans.
,
25
(
2
), pp.
1341
1350
.
30.
García-Salaberri
,
P. A.
,
2022
, “Effective Transport Properties,”
Electrochemical Cell Calculations with OpenFOAM
,
S.
Beale
, and
W.
Lehnert
, eds.,
Springer Nature
,
Switzerland
, pp.
151
168
.
Lecture Notes in Energy Vol. 42
.
31.
Niblett
,
D.
,
Niasar
,
V.
, and
Holmes
,
S.
,
2019
, “
Enhancing the Performance of Fuel Cell Gas Diffusion Layers Using Ordered Microstructural Design
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013520
.
32.
Whittaker
,
E. T.
, and
Watson
,
G. N.
,
1958
,
A Course of Modern Analysis
,
Cambridge University Press
,
Cambridge
.
33.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1970
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics
,
United States Government Printing Office
,
Washington
.
34.
Schroeder
,
W.
,
Martin
,
K.
, and
Lorensen
,
B.
,
1998
,
The Visualization Toolkit
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
35.
Beale
,
S. B.
,
2005
, “
Mass Transfer in Plane and Square Ducts
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3256
3260
.
36.
Beale
,
S. B.
,
2007
, “
Conjugate Mass Transfer in Gas Channels and Diffusion Layers of Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
1
), pp.
1
10
.
37.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1974
, “A Calculation Procedure for the Transient and Steady-State Behavior of Shell-and-Tube Heat Exchangers,”
Heat Exchangers: Design and Theory Sourcebook
,
N.
Afgan
, and
E. U.
Schlünder
, eds.,
Scripta Book Company
,
Washington, DC
, pp.
155
176
.
38.
Beale
,
S. B.
,
2020
, “
Errata
,”
Heat Transfer Eng.
,
41
(
8
), p.
765
.
39.
Beale
,
S. B.
,
2012
, “
A Simple, Effective Viscosity Formulation for Turbulent Flow and Heat Transfer in Compact Heat Exchangers
,”
Heat Transfer Eng.
,
33
(
1
), pp.
4
11
.
40.
Beale
,
S.B.
,
Zhang
,
S.
,
Andersson
,
M.
,
Nishida
,
R.T.
,
Pharoah
,
J.G.
, and
Lehnert
,
W.
,
2020
, “Heat and Mass Transfer in Fuel Cells and Stacks,”
50 Years of CFD in Engineering Sciences
,
A.
Runchal
, ed.,
Springer
,
Singapore
, pp.
485
511
.
41.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat-Transfer in Porous-Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.
42.
Cussler
,
E. L.
,
1997
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
,
Cambridge
.
43.
Fuller
,
E.
,
Schettler
,
P.
, and
Giddings
,
J.
,
1966
, “
New Method for Prediction of Binary Gas-Phase Diffusion Coefficients
,”
Ind. Eng. Chem.
,
58
(
5
), pp.
18
27
.
44.
Poling
,
B.
,
Prausnitz
,
J.
, and
Connell
,
J.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
45.
Wilke
,
C. R.
,
1950
, “
Diffusional Properties of Multicomponent Gases
,”
Chem. Eng. Prog.
,
46
(
2
), pp.
95
104
.
46.
Taylor
,
R.
, and
Krishna
,
R.
,
1993
,
Multicomponent Mass Transfer
,
Wiley-Interscience
,
New York
.
47.
Mason
,
E. A.
, and
Malinauskas
,
A.
,
1983
,
Gas Transport in Porous Media: The Dusty-Gas Model
,
Elsevier
,
Amsterdam
.
48.
Zhang
,
H.
,
Zhu
,
L.
,
Harandi
,
H. B.
,
Duan
,
K.
,
Zeis
,
R.
,
Sui
,
P.-C.
, and
Chuang
,
P. Y. A.
,
2021
, “
Microstructure Reconstruction of the Gas Diffusion Layer and Analyses of the Anisotropic Transport Properties
,”
Energy Convers. Manag.
,
24
(
1
), p.
114293
.
You do not currently have access to this content.