Abstract

Flexible lithium-ion batteries (LIBs) have a strong oncoming consumer market demand for use in wearable electronic devices, flexible smart electronics, roll-up displays, electronic shelf labels, active radio-frequency identification tags, implantable medical devices, and so forth. This market demand necessitates research and development of new flexible LIBs to fulfill the electrical energy and power requirements of these next-generation devices. In this study, we investigate the performance of a new flexible LIB made from semi-solid electrodes. The semi-solid electrodes are made by adding a mixture of electrode active material and conductive material to the organic liquid electrode. This gives dense and viscous slurry so that all solid particles can move by acting pressure, shear, or bending forces to the battery. To study the performance of this battery we develop a 3D heterogeneous mathematical model that considers all necessary transport phenomena including the charge and mass transfer and electrochemical reactions at the continuum mechanics level on the reconstructed 3D structure of semi-solid electrodes. The finite element analysis (FEA) method was used to solve the governing equations using the comsol multiphysics software package. The model is validated using experimental data for the flexible LIB made in the lab. Based on the developed model, several studies are conducted to understand the effect of the battery discharge rate and the operating temperature on the battery capacity. These studies recommend an operational range for the temperature and discharge rate for this flexible LIB.

References

1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
2.
Das
,
R.
,
2013
, “
Printed, Flexible and Organic Electronics Sees 15.3% CAGR
,” https://www.idtechex.com/en/research-article/printed-flexible-and-organic- electronics-sees-15-3-cagr/5439.
3.
He
,
X.
,
2016
, “
Flexible, Printed and Thin Film Batteries 2016–2026
,” https://www.idtechex.com/ko/research-report/flexible-printed-and-thin-film-batteries-2019-2029/634.
4.
Samadani
,
S.
,
Mastali
,
M.
,
Farhad
,
S.
,
Fraser
,
R. A.
, and
Fowler
,
M.
,
2016
, “
Li-Ion Battery Performance and Degradation in Electric Vehicles Under Different Usage Scenarios
,”
Int. J. Energy Res.
,
40
(
3
), pp.
379
392
.
5.
Alhadri
,
M.
,
Abdul Haq
,
M.
, and
Farhad
,
S.
,
2018
, “
Comparison of Duty-Cycle of a Battery Cell for Electric Aircraft and Electric Vehicle Applications
,”
Proceedings of the SAE International
,
Detroit, MI
,
Apr. 10–12
.
6.
Reddy
,
T. B.
,
2010
,
Linden’s Handbook of Batteries
, 4th ed.,
McGraw-Hill Professional
,
New York
.
7.
Deng
,
D.
,
2015
, “
Li-Ion Batteries: Basics, Progress, and Challenges
,”
Energy Sci. Eng.
,
3
(
5
), pp.
385
418
.
8.
Chabot
,
V.
,
Farhad
,
S.
,
Chen
,
Z.
,
Fung
,
A. S.
,
Yu
,
A.
, and
Hamdullahpur
,
F.
,
2013
, “
Effect of Electrode Physical and Chemical Properties on Lithium-Ion Battery Performance
,”
Int. J. Energy Res.
,
37
(
14
), pp.
1723
1736
.
9.
Hu
,
L.
,
Wu
,
H.
,
La Mantia
,
F.
,
Yang
,
Y.
, and
Cui
,
Y.
,
2010
, “
Thin, Flexible Secondary Li-Ion Paper Batteries
,”
ACS Nano
,
4
(
10
), pp.
5843
5848
.
10.
Gwon
,
H.
,
Kim
,
H.-S.
,
Lee
,
K. U.
,
Seo
,
D.-H.
,
Park
,
Y. C.
,
Lee
,
Y.-S.
,
Ahn
,
B. T.
, and
Kang
,
K.
,
2011
, “
Flexible Energy Storage Devices Based on Graphene Paper
,”
Energy Environ. Sci.
,
4
(
4
), p.
1277
.
11.
Li
,
N.
,
Chen
,
Z.
,
Ren
,
W.
,
Li
,
F.
, and
Cheng
,
H.-M.
,
2012
, “
Flexible Graphene-Based Lithium Ion Batteries With Ultrafast Charge and Discharge Rates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
43
), pp.
17360
17365
.
12.
Kwon
,
Y. H.
,
Woo
,
S.-W.
,
Jung
,
H.-R.
,
Yu
,
H. K.
,
Kim
,
K.
,
Oh
,
B. H.
,
Ahn
,
S.
, et al
,
2012
, “
Cable-Type Flexible Lithium Ion Battery Based on Hollow Multi-Helix Electrodes
,”
Adv. Mater.
,
24
(
38
), pp.
5192
5197
.
13.
Koo
,
M.
,
Park
,
K.-I.
,
Lee
,
S. H.
,
Suh
,
M.
,
Jeon
,
D. Y.
,
Choi
,
J. W.
,
Kang
,
K.
, and
Lee
,
K. J.
,
2012
, “
Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems
,”
Nano Lett.
,
12
(
9
), pp.
4810
4816
.
14.
Xu
,
S.
,
Zhang
,
Y.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
,
Fan
,
J. A.
, et al
,
2013
, “
Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
(
1
), p.
1543
.
15.
Liu
,
Y.
,
Gorgutsa
,
S.
,
Santato
,
C.
, and
Skorobogatiy
,
M.
,
2012
, “
Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO4 Cathode and Li4Ti5O12 Anode for Applications in Smart Textiles
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
349
356
.
16.
Liu
,
B.
,
Zhang
,
J.
,
Wang
,
X.
,
Chen
,
G.
,
Chen
,
D.
,
Zhou
,
C.
, and
Shen
,
G.
,
2012
, “
Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries
,”
Nano Lett.
,
12
(
6
), pp.
3005
3011
.
17.
Liu
,
B.
,
Wang
,
X.
,
Chen
,
H.
,
Wang
,
Z.
,
Chen
,
D.
,
Cheng
,
Y.-B.
,
Zhou
,
C.
, and
Shen
,
G.
,
2013
, “
Hierarchical Silicon Nanowires-Carbon Textiles Matrix as a Binder-Free Anode for High-Performance Advanced Lithium-Ion Batteries
,”
Sci. Rep.
,
3
(
1
), p.
1622
.
18.
Kim
,
S.-H.
,
Choi
,
K.-H.
,
Cho
,
S.-J.
,
Choi
,
S.
,
Park
,
S.
, and
Lee
,
S.-Y.
,
2015
, “
Printable Solid-State Lithium-Ion Batteries: A New Route Toward Shape-Conformable Power Sources With Aesthetic Versatility for Flexible Electronics
,”
Nano Lett.
,
15
(
8
), pp.
5168
5177
.
19.
Duduta
,
M.
,
Ho
,
B.
,
Wood
,
V. C.
,
Limthongkul
,
P.
,
Brunini
,
V. E.
,
Carter
,
W. C.
, and
Chiang
,
Y. M.
,
2011
, “
Semi-Solid Lithium Rechargeable Flow Battery
,”
Adv. Energy Mater.
,
1
(
4
), pp.
511
516
.
20.
Ho
,
B. Y.
,
2012
, “
An Experimental Study on the Structure-Property Relationship of Composite Fluid Electrodes for Use in High Energy Density Semi-Solid Flow Cells
,”
Ph.D thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA
.
21.
Remick
,
R. J.
, and
Ang
,
P. G. P.
,
1981
, “
Electrically Rechargeable Anionically Active Reduction-Oxidation Electrical Storage-Supply System
,” U.S. Patent No. 4485154.
22.
Rychcik
,
M.
, and
Skyllas-Kazacos
,
M.
,
1988
, “
Characteristics of a New All-Vanadium Redox Flow Battery
,”
J. Power Sources
,
22
(
1
), pp.
59
67
.
23.
Ponce De León
,
C.
,
Frías-Ferrer
,
A.
,
González-García
,
J.
,
Szánto
,
D. A.
, and
Walsh
,
F. C.
,
2006
, “
Redox Flow Cells for Energy Conversion
,”
J. Power Sources
,
160
(
1
), pp.
716
732
.
24.
Samadani
,
E.
,
Farhad
,
S.
,
Scott
,
W.
,
Mastali
,
M.
,
Gimenez
,
L. E.
,
Fowler
,
M.
, and
Fraser
,
R. A.
,
2015
, “
Empirical Modeling of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy Tests
,”
Electrochim. Acta
,
160
, pp.
169
177
.
25.
Xiao
,
M.
, and
Choe
,
S.-Y.
,
2015
, “
Impedance Model of Lithium Ion Polymer Battery Considering Temperature Effects Based on Electrochemical Principle: Part I for High Frequency
,”
J. Power Sources
,
277
, pp.
403
415
.
26.
Guo
,
Z.
,
Liaw
,
B. Y.
,
Qiu
,
X.
,
Gao
,
L.
, and
Zhang
,
C.
,
2015
, “
Optimal Charging Method for Lithium Ion Batteries Using a Universal Voltage Protocol Accommodating Aging
,”
J. Power Sources
,
274
, pp.
957
964
.
27.
Kim
,
J. H.
,
Lee
,
S. J.
,
Kim
,
E. S.
,
Kim
,
S. K.
,
Kim
,
C. H.
, and
Prikler
,
L.
,
2014
, “
Modeling of Battery for EV Using EMTP/ATPDraw
,”
J. Electr. Eng. Technol.
,
9
(
1
), pp.
98
105
.
28.
Park
,
C.-K.
,
Zhang
,
Z.
,
Xu
,
Z.
,
Kakirde
,
A.
,
Kang
,
K.
,
Chai
,
C.
,
Au
,
G.
, and
Cristo
,
L.
,
2007
, “
Variables Study for the Fast Charging Lithium Ion Batteries
,”
J. Power Sources
,
165
(
2
), pp.
892
896
.
29.
Zhang
,
D.
,
Popov
,
B. N.
, and
White
,
R. E.
,
2000
, “
Modeling Lithium Intercalation of a Single Spinel Particle Under Potentiodynamic Control
,”
J. Electrochem. Soc.
,
147
(
3
), p.
831
.
30.
Ramadesigan
,
V.
,
Northrop
,
P. W. C.
,
De
,
S.
,
Santhanagopalan
,
S.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2012
, “
Modeling and Simulation of Lithium-Ion Batteries From a Systems Engineering Perspective
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
R31
R45
.
31.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.
32.
Newman
,
J.
, and
Tiedemann
,
W.
,
1975
, “
Porous Electrode Theory With Battery Applications
,”
AIChE J.
,
21
(
1
), pp.
25
41
.
33.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
34.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
.
35.
Doyle
,
M.
, and
Newman
,
J.
,
1995
, “
The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems
,”
Electrochim. Acta
,
40
(
13–14
), pp.
2191
2196
.
36.
Mastali Majdabadi
,
M.
,
Farhad
,
S.
,
Farkhondeh
,
M.
,
Fraser
,
R. A.
, and
Fowler
,
M.
,
2015
, “
Simplified Electrochemical Multi-particle Model for LiFePO4 Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
275
, pp.
633
643
.
37.
Farkhondeh
,
M.
,
Safari
,
M.
,
Pritzker
,
M.
,
Fowler
,
M.
,
Han
,
T.
,
Wang
,
J.
, and
Delacourt
,
C.
,
2013
, “
Full-Range Simulation of a Commercial LiFePO4 Electrode Accounting for Bulk and Surface Effects: A Comparative Analysis
,”
J. Electrochem. Soc.
,
161
(
3
), pp.
A201
A212
.
38.
Liu
,
Z.
,
Scott Cronin
,
J.
,
Chen-Wiegart
,
Y. K.
,
Wilson
,
J. R.
,
Yakal-Kremski
,
K. J.
,
Wang
,
J.
,
Faber
,
K. T.
, and
Barnett
,
S. A.
,
2013
, “
Three-dimensional Morphological Measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 Lithium-Ion Battery Cathodes
,”
J. Power Sources
,
227
, pp.
267
274
.
39.
Lim
,
C.
,
Yan
,
B.
,
Kang
,
H.
,
Song
,
Z.
,
Lee
,
W. C.
,
De Andrade
,
V.
,
De Carlo
,
F.
,
Yin
,
L.
,
Kim
,
Y.
, and
Zhu
,
L.
,
2016
, “
Analysis of Geometric and Electrochemical Characteristics of Lithium Cobalt Oxide Electrode With Different Packing Densities
,”
J. Power Sources
,
328
, pp.
46
55
.
40.
Kashkooli
,
A. G.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Feng
,
K.
,
Litster
,
S.
,
Babu
,
S. K.
,
Zhu
,
L.
, and
Chen
,
Z.
,
2016
, “
Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-Scale X-ray Computed Tomography
,”
J. Power Sources
,
307
, pp.
496
509
.
41.
Scipioni
,
R.
,
Jørgensen
,
P. S.
,
Ngo
,
D.-T.
,
Simonsen
,
S. B.
,
Liu
,
Z.
,
Yakal-Kremski
,
K. J.
,
Wang
,
H.
, et al
,
2016
, “
Electron Microscopy Investigations of Changes in Morphology and Conductivity of LiFePO4/C Electrodes
,”
J. Power Sources
,
307
, pp.
259
269
.
42.
Inoue
,
G.
, and
Kawase
,
M.
,
2017
, “
Numerical and Experimental Evaluation of the Relationship Between Porous Electrode Structure and Effective Conductivity of Ions and Electrons in Lithium-Ion Batteries
,”
J. Power Sources
,
342
, pp.
476
488
.
43.
Fontes
,
E.
Li-Ion Battery: Heterogeneous Alternative to the Newman Model
.” COMSOL Blog, www.comsol.com/blogs/li-ion-battery-heterogeneous-alternative-to-the-newman-model/, Accessed April 2022.
44.
Foreman
,
E.
,
2017
, “
Fluidized Cathodes for Flexible Lithium-ion Batteries
,” M.Sc. Thesis, Department of Mechanical Engineering,
The University of Akron
,
Akron, OH
.
45.
Zakri
,
W.
,
Muapper
,
A.
,
AbdulHaq
,
M.
,
Esmaeeli
,
R.
,
Hashemi
,
S. R.
,
Aliniagerdroudbari
,
H.
, and
Farhad
,
S.
,
2018
, “
Quasi-Solid Graphite Anode for Flexible Lithium-Ion Battery
,”
ASME 2018 12th International Conference on Energy Sustainability
,
Lake Buena Vista, FL
,
June 24–28
, Vol. 51418, p. V001T07A007.
46.
Foreman
,
E.
,
Zakri
,
W.
,
Sanatimoghaddam
,
M. H.
,
Modjtahedi
,
A.
,
Pathak
,
S.
,
Kashkooli
,
A. G.
,
Garafolo
,
N. G.
, and
Farhad
,
S.
,
2017
, “
A Review of Inactive Materials and Components of Flexible Lithium-Ion Batteries
,”
Adv. Sustainable Syst.
,
1
(
11
), p.
1700061
.
You do not currently have access to this content.