Abstract

The identification of water status is the foundation for fuel cell water management, which is helpful to fuel cell reliability and longevity. In this article, a novel and reliable method for diagnosing the hydration condition of proton exchange membrane fuel cells (PEMFCs) was presented using a fractional-order model (FOM) to represent the PEMFCs impedance. The results show that the mean root-mean-squared error (RMSE) and mean absolute percentage error (MAPE) between the proposed model and experimental data (in normal, drying, or flooding cases) are about 0.034 and 0.473, respectively. The fast Fourier transform–electrochemical impedance spectroscopy technique (FFT-EIS) was used as an alternative technique that is simple and efficient to electrochemical impedance spectroscopy (EIS). The PEMFCs hydration state is monitored by observing the changing effect of the physical resistor values (membrane resistance, polarization, and diffusion resistances) of the proposed model. These resistors, characterized by their high sensitivity to the drying and flooding of PEMFCs, affect the Nyquist impedance spectra and frequency spectrum amplitudes at low and high frequencies. Based on the obtained results, it is concluded that the proposed strategy can be used to develop new domains in which the PEMFCs’ hydration states can be properly predicted.

References

1.
Ma
,
T.
,
Lin
,
W.
,
Yang
,
Y.
, and
Wang
,
K.
,
2019
, “
Water Content Diagnosis for Proton Exchange Membrane Fuel Cell Based on Wavelet Transformation
,”
Int. J. Hydrog. Energy
,
45
(
39
), pp.
20339
20350
.
2.
Arama
,
F. Z.
,
Mammar
,
K.
,
Laribi
,
S.
,
Necaibia
,
A.
, and
Ghaitaoui
,
T.
,
2020
, “
Implementation of Sensor Based on Neural Networks Technique to Predict the PEM Fuel Cell Hydration State
,”
J. Energy Storage
,
27
, p.
101051
.
3.
Esmaili
,
Q.
,
Nimvari
,
M. E.
,
Jouybari
,
N. F.
, and
Chen
,
Y. S.
,
2020
, “
Model Based Water Management Diagnosis in Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
45
(
31
), pp.
15618
15629
.
4.
Li
,
H.
,
Tang
,
Y.
,
Wang
,
Z.
,
Shi
,
Z.
,
Wu
,
S.
,
Song
,
D.
,
Zhang
,
J.
, et al
,
2008
, “
A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
178
(
1
), pp.
103
117
.
5.
Iranzo
,
A.
, and
Boillat
,
P.
,
2014
, “
Liquid Water Distribution Patterns Featuring Back-Diffusion Transport in a PEM Fuel Cell With Neutron Imaging
,”
Int. J. Hydrogen Energy
,
39
(
30
), pp.
17240
17245
.
6.
Gu
,
X.
,
Hou
,
Z.
, and
Cai
,
J.
,
2021
, “
Data-Based Flooding Fault Diagnosis of Proton Exchange Membrane Fuel Cell Systems Using LSTM Networks
,”
Energy and AI
,
4
, p.
100056
.
7.
Fouquet
,
N.
,
Doulet
,
C.
,
Nouillant
,
C.
,
Dauphin-Tanguy
,
G.
, and
Ould-Bouamama
,
B.
,
2006
, “
Model Based PEM Fuel Cell State-of-Health Monitoring via ac Impedance Measurements
,”
J. Power Sources
,
159
(
2
), pp.
905
913
.
8.
Petrone
,
R.
,
Zheng
,
Z.
,
Hissel
,
D.
,
Péra
,
M. C.
,
Pianese
,
C.
,
Sorrentino
,
M.
,
Becherif
,
M.
, and
Yousfi-Steiner
,
N.
,
2013
, “
A Review on Model-Based Diagnosis Methodologies for PEMFCs
,”
Int. J. Hydrogen Energy
,
38
(
17
), pp.
7077
7091
.
9.
Laribi
,
S.
,
Mammar
,
K.
,
Hamouda
,
M.
, and
Sahli
,
Y.
,
2016
, “
Impedance Model for Diagnosis of Water Management in Fuel Cells Using Artificial Neural Networks Methodology
,”
Int. J. Hydrogen Energy
,
41
(
38
), pp.
17093
17101
.
10.
Zheng
,
Z.
,
Péra
,
M. C.
,
Hissel
,
D.
,
Becherif
,
M.
,
Agbli
,
K. S.
, and
Li
,
Y.
,
2014
, “
A Double-Fuzzy Diagnostic Methodology Dedicated to Online Fault Diagnosis of Proton Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
271
, pp.
570
581
.
11.
Mammar
,
K.
, and
Laribi
,
S.
,
2018
, “
Application of Adaptive Neuro-Fuzzy Inference System Techniques to Predict Water Activity in Proton Exchange Membrane Fuel Cell
,”
ASME J. Electrochem Energy Convers Storage
,
15
(
4
), p.
041009
.
12.
Tang
,
Z.
,
Huang
,
Q.
,
Wang
,
Y.
,
Zhang
,
F.
,
Li
,
W.
,
Li
,
A.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2020
, “
Recent Progress in the Use of Electrochemical Impedance Spectroscopy for the Measurement, Monitoring, Diagnosis and Optimization of Proton Exchange Membrane Fuel Cell Performance
,”
J. Power Sources
,
468
, p.
228361
.
13.
Mohsin
,
M.
,
Raza
,
R.
,
Mohsin-ul-mulk
,
M.
,
Abida
,
Y.
, and
Viktor
,
H.
,
2020
, “
Electrochemical Characterization of Polymer Electrolyte Membrane Fuel Cells and Polarization Curve Analysis
,”
Int. J. Hydrogen Energy
,
45
(
45
), pp.
24093
24107
.
14.
Pérez-Page
,
M.
, and
Pérez-Herranz
,
V.
,
2014
, “
Study of the Electrochemical Behaviour of a 300 W PEM Fuel Cell Stack by Electrochemical Impedance Spectroscopy
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
4009
4015
.
15.
Stack
,
C.
,
Debenjak
,
A.
,
Jovan
,
V.
,
Petrovcic
,
J.
,
Gasperin
,
M.
, and
Pregel
,
B.
,
2012
, “
An Assessment of Water Conditions in a PEM Fuel Cell Stack Using Electrochemical Impedance Spectroscopy
,”
IEEE Prognostics and System Health Management Conference (PHM-2012 Beijing)
,
Beijing, China
,
May 23–25
, pp.
1
6
, INSPEC Accession Number: 12836812.
16.
Ren
,
P.
,
Pei
,
P.
,
Li
,
Y.
,
Wu
,
Z.
,
Chen
,
D.
, and
Huang
,
S.
,
2019
, “
Diagnosis of Water Failures in Proton Exchange Membrane Fuel Cell With Zero-Phase Ohmic Resistance and Fixed-Low-Frequency Impedance
,”
Appl. Energy
,
239
, pp.
785
792
.
17.
Canut
,
J. L.
,
Abouatallah
,
R. M.
, and
Harrington
,
D. A.
,
2006
, “
Detection of Membrane Drying, Fuel Cell Flooding, and Anode Catalyst Poisoning on PEMFC Stacks by Electrochemical Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
153
(
5
), pp.
A857
A864
.
18.
Lu
,
H.
,
Chen
,
J.
,
Yan
,
C.
, and
Liu
,
H.
,
2019
, “
On-line Fault Diagnosis for Proton Exchange Membrane Fuel Cells Based on a Fast Electrochemical Impedance Spectroscopy Measurement
,”
J. Power Sources
,
430
, pp.
233
243
.
19.
Yan
,
C.
,
Chen
,
J.
,
Liu
,
H.
,
Kumar
,
L.
, and
Lu
,
H.
,
2021
, “
Health Management for PEM Fuel Cells Based on an Active Fault Tolerant Control Strategy
,”
IEEE Trans. Sustainable Energy
,
12
(
2
), pp.
1
10
.
20.
Beer
,
C. d.
,
Barendse
,
P. S.
, and
Pillay
,
P.
,
2015
, “
Fuel Cell Condition Monitoring Using Optimized Broadband Impedance Spectroscopy
,”
IEEE Trans. Ind. Electron.
,
62
(
8
), pp.
5306
5316
.
21.
Li
,
Z.
,
Outbib
,
R.
,
Hissel
,
D.
, and
Giurgea
,
S.
,
2014
, “
Control Engineering Practice Data-Driven Diagnosis of PEM Fuel Cell : A Comparative Study
,”
Control Eng. Pract.
,
28
, pp.
1
12
.
22.
Kurz
,
T.
,
Hakenjos
,
A.
,
Zedda
,
M.
, and
Agert
,
C.
,
2008
, “
An Impedance-Based Predictive Control Strategy for the State-of-Health of PEM Fuel Cell Stacks
,”
J. Power Sources
,
180
(
2
), pp.
742
747
.
23.
Roy
,
S. K.
, and
Orazem
,
M. E.
,
2008
, “
Analysis of Flooding as a Stochastic Process in Polymer Electrolyte Membrane (PEM) Fuel Cells by Impedance Techniques
,”
J. Power Sources
,
184
(
1
), pp.
212
219
.
24.
Cooper
,
K. R.
, and
Smith
,
M.
,
2006
, “
Electrical Test Methods for On-line Fuel Cell Ohmic Resistance Measurement
,”
J. Power Sources
,
160
(
2
), pp.
1088
1095
.
25.
Laribi
,
S.
,
Mammar
,
K.
,
Sahli
,
Y.
, and
Koussa
,
K.
,
2019
, “
Analysis and Diagnosis of PEM Fuel Cell Failure Modes (fl Ooding & Drying) Across the Physical Parameters of Electrochemical Impedance Model : Using Neural Networks Method
,”
Sustainable Energy Technol. Assessments
,
34
, pp.
35
42
.
26.
Li
,
Y.
,
Pei
,
P.
,
Wu
,
Z.
,
Ren
,
P.
,
Jia
,
X.
,
Chen
,
D.
, and
Shangwei
,
H.
,
2018
, “
Approaches to Avoid Flooding in Association With Pressure Drop in Proton Exchange Membrane Fuel Cells
,”
Appl. Energy
,
224
, pp.
42
51
.
27.
Egami
,
M.
,
2021
, “
A New Noise Reduction Concept for the FFT EIS Method Using the Ergodic Hypothesis for Fuel Cell Measurement
,”
J. Electrochem. Soc.
,
168
(
1
), p.
014502
.
28.
Lu
,
P.
,
Li
,
M.
,
Zhang
,
L.
, and
Zhou
,
L.
,
2019
, “
A Novel Fast-EIS Measuring Method and Implementation for Lithium-Ion Batteries
,”
Prognostics and System Health Management Conference (PHM-Qingdao)
,
Qingdao, China
,
Oct. 25–27
, pp.
1
6
, INSPEC Accession Number: 1927686.
29.
Hansen
,
S.
,
Quiroga-González
,
E.
,
Carstensen
,
J.
,
Adelung
,
R.
, and
Föll
,
H.
,
2017
, “
Size-Dependent Physicochemical and Mechanical Interactions in Battery Paste Anodes of Si-Microwires Revealed by Fast-Fourier-Transform Impedance Spectroscopy
,”
J. Power Sources
,
349
, pp.
1
10
.
30.
Nöhren
,
S.
,
Quiroga-González
,
E.
,
Carstensen
,
J.
, and
Föll
,
H.
,
2016
, “
Electrochemical Fabrication and Characterization of Silicon Microwire Anodes for Li Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A373
A379
.
31.
Valiūnienė
,
A.
,
Sabirovas
,
T.
,
Petronienė
,
J.
, and
Ramanavičius
,
A.
,
2020
, “
Towards the Application of Fast Fourier Transform—Scanning Electrochemical Impedance Microscopy (FFT-SEIM)
,”
J. Electroanal. Chem.
,
864
, p.
114067
.
32.
Cruz Manzo
,
S.
, and
Chen
,
R.
,
2015
, “
Evaluate the Validity of Electrochemical Impedance Measurements of Polymer Electrolyte Fuel Cells Using a Computational Algorithm Based on Fast Fourier Transform
,”
Insights Anal Electrochem.
,
1
(
1
), pp.
1
12
.
33.
Fu
,
Y.
,
Xu
,
J.
,
Shi
,
M.
, and
Mei
,
X.
,
2022
, “
A Fast Impedance Calculation-Based Battery State-of-Health Estimation Method
,”
IEEE Trans. Ind. Electron.
,
69
(
7
), pp.
7019
7028
.
34.
Lyu
,
C.
,
Liu
,
H.
,
Luo
,
W.
,
Zhang
,
T.
, and
Zhao
,
W.
,
2018
, “
A Fast Time Domain Measuring Technique of Electrochemical Impedance Spectroscopy Based on FFT
,”
2018 Prognostics and System Health Management Conference (PHM-Chongqing)
,
Chongqing, China
,
Oct. 26–28
, pp.
450
455
, INSPEC Accession Number: 18401439.
35.
Chen
,
J.
, and
Zhou
,
B.
,
2008
, “
Diagnosis of PEM Fuel Cell Stack Dynamic Behaviors
,”
J. Power Sources
,
177
(
1
), pp.
83
95
.
36.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
,
1996
, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
61
(
1–2
), pp.
183
188
.
37.
Hamelin
,
J.
,
Agbossou
,
K.
,
Laperrière
,
A.
,
Laurencelle
,
F.
, and
Bose
,
T. K.
,
2001
, “
Dynamic Behavior of a PEM Fuel Cell Stack for Stationary Applications
,”
Int. J. Hydrogen Energy
,
26
(
6
), pp.
625
629
.
38.
Murugesan
,
K.
, and
Senniappan
,
V.
,
2013
, “
Investigation of Water Management Dynamics on the Performance of a Ballard-Mark-V Proton Exchange Membrane Fuel Cell Stack System
,”
Int. J. Electrochem. Sci.
,
8
(
6
), pp.
7885
7904
.
39.
Corrêa
,
J. M.
,
Farret
,
F. A.
,
Gomes
,
J. R.
, and
Simões
,
M. G.
,
2003
, “
Simulation of Fuel-Cell Stacks Using a Computer-Controlled Power Rectifier With the Purposes of Actual High-Power Injection Applications
,”
IEEE Trans. Ind. Appl.
,
39
(
4
), pp.
1136
1142
.
40.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
41.
Jemeï
,
S.
,
Hissel
,
D.
,
Péra
,
M. C.
, and
Kauffmann
,
J. M.
,
2003
, “
On-Board Fuel Cell Power Supply Modeling on the Basis of Neural Network Methodology
,”
J. Power Sources
,
124
(
2
), pp.
479
486
.
42.
Noiying
,
P.
,
Hinaje
,
M.
,
Thounthong
,
P.
,
Raël
,
S.
, and
Davat
,
B.
,
2012
, “
Using Electrical Analogy to Describe Mass and Charge Transport in PEM Fuel Cell
,”
Renew Energy
,
44
, pp.
128
140
.
43.
Yu
,
D.
, and
Yuvarajan
,
S.
,
2005
, “
Electronic Circuit Model for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
142
(
1–2
), pp.
238
242
.
44.
Lazarou
,
S.
,
Pyrgioti
,
E.
, and
Alexandridis
,
A. T.
,
2009
, “
A Simple Electric Circuit Model for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
190
(
2
), pp.
380
386
.
45.
Hinaje
,
M.
,
Raël
,
S.
,
Noiying
,
P.
,
Nguyen
,
D. A.
, and
Davat
,
B.
,
2012
, “
An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling
,”
Energies
,
5
(
8
), pp.
2724
2744
.
46.
Wang
,
C.
,
Nehrir
,
M. H.
, and
Shaw
,
S. R.
,
2005
, “
Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits
,”
IEEE Trans Energy Convers
,
20
(
2
), pp.
442
451
.
47.
Roy
,
S. K.
, and
Orazem
,
M. E.
,
2008
, “
Analysis of Flooding as a Stochastic Process in Polymer Electrolyte Membrane (PEM) Fuel Cells by Impedance Techniques
,”
J. Power Sources
,
184
(
1
), pp.
212
219
.
48.
Laribi
,
S.
,
Mammar
,
K.
,
Aama
,
Z. F.
, and
Ghaitaoui
,
T.
,
2021
, “
Fractional Order Model for Diagnosis of Flooding and Drying of the Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
46
(
66
), pp.
33287
33299
.
49.
Laribi
,
S.
,
Mammar
,
K.
,
Sahli
,
Y.
,
Necaibia
,
A.
,
Aama
,
Z. F.
, and
Ghaitaoui
,
T.
,
2021
, “
PEMFC Water Diagnosis Using PWM Functionality Signal and Fractional Order Model
,”
Energy Rep.
,
7
, pp.
4214
4221
.
50.
Iftikhar
,
M. U.
,
Riu
,
D.
,
Druart
,
F.
,
Rosini
,
S.
,
Bultel
,
Y.
, and
Retière
,
N.
,
2006
, “
Dynamic Modeling of Proton Exchange Membrane Fuel Cell Using Non-Integer Derivatives
,”
J. Power Sources
,
160
(
2
), pp.
1170
1182
.
51.
Freeborn
,
T. J.
,
Maundy
,
B.
, and
Elwakil
,
A. S.
,
2015
, “
Fractional-Order Models of Supercapacitors, Batteries and Fuel Cells: A Survey
,”
Mater Renew Sustain Energy
,
4
(
9
), pp.
1
7
.
52.
Taleb
,
M. A.
,
2016
, “
Exploitation des Mesures électriques en vue de la Surveillance et du Diagnostic en Temps Réel des Piles à Combustible Pour Application Transport Automobile
,”
Doctoral dissertation
,
Université Paris-Saclay (ComUE)
,
France
.
53.
Taleb
,
M. A.
,
Godoy
,
E.
, and
Bethoux
,
O.
,
2014
, “
Frequential Identification of a Proton Exchange Membrane Fuel Cell (PEMFC) Fractional Order Model
,”
Ind Electron Soc IECON 2014—40th Annual Conference of IEEE
,
Dallas, TX
,
Oct. 29–Nov. 1
, pp.
5647
5653
, INSPEC Accession Number: 14950903.
54.
Gabriunaite
,
I.
,
Valiūnienė
,
A.
, and
Valincius
,
G.
,
2018
, “
Formation and Properties of Phospholipid Bilayers on Fluorine Doped Tin Oxide Electrodes
,”
Electrochim Acta
,
283
, pp.
1351
1358
.
55.
Battistel
,
A.
, and
La Mantia
,
F.
,
2019
, “
On the Physical Definition of Dynamic Impedance: How to Design an Optimal Strategy for Data Extraction
,”
Electrochim Acta
,
304
, pp.
513
520
.
56.
Morkvenaite-Vilkonciene
,
I.
,
Valiūnienė
,
A.
,
Petroniene
,
J.
, and
Ramanavicius
,
A.
,
2017
, “
Hybrid System Based on Fast Fourier Transform Electrochemical Impedance Spectroscopy Combined With Scanning Electrochemical Microscopy
,”
Electrochem Commun
,
83
, pp.
110
112
.
57.
Mathworks
,
2019
, “
Fast Fourier Transform—MATLAB fft—MathWorks India
,” Matlab Help.
58.
Demuth
,
H.
,
2002
, “
Neural Network Toolbox
,”
Networks
,
24
(
1
), pp.
1
8
.
You do not currently have access to this content.