Abstract

This study reports the superior performance of graphene nanosheet (GNS) materials over Vulcan XC incorporated as a cathode catalyst in Li–O2 battery. The GNSs employed were synthesized from a novel, eco-friendly, and cost-effective technique involving chamber detonation of oxygen (O2) and acetylene (C2H2) precursors. Two GNS catalysts i.e., GNS-1 and GNS-2 fabricated with 0.3 and 0.5 O2/C2H2 precursor molar ratios, respectively, were utilized in this study. Specific surface area (SSA) analysis revealed significantly higher SSA and total pore volume for GNS-1 (180 m2 g−1, 0.505 cm3 g−1) as compared with GNS-2 (19 m2 g−1, 0.041 cm3 g−1). GNS-1 exhibited the highest discharge capacity (4.37 Ah g-1) and superior cycling stability compared with GNS-2 and Vulcan XC. Moreover, GNS-1 demonstrated promising performance at higher current densities (0.2 and 0.3 mA cm−2) and with various organic electrolytes. The superior performance of GNS-1 can be ascribed to its higher mesopore volume, SSA, and optimum wettability compared to its counterparts.

References

1.
Wang
,
F.
,
Li
,
X.
,
Hao
,
X.
, and
Tan
,
J.
,
2020
, “
Review and Recent Advances in Mass Transfer in Positive Electrodes of Aprotic Li–O2 Batteries
,”
ACS Appl. Energy Mater.
,
3
(
3
), pp.
2258
2270
.
2.
Wang
,
F.
,
Kahol
,
P. K.
,
Gupta
,
R.
, and
Li
,
X.
,
2019
, “
Experimental Studies of Carbon Electrodes With Various Surface Area for Li–O2 Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041007
.
3.
Zaidi
,
S.S.H.
, and
Li
,
X.
,
2021
, “
Effects of Oxygen Cathode Substrates with Various Carbon Catalysts on the Discharge Capacity of Lithium-Oxygen Battery
,”
ECS Meeting Abstracts MA2021-01, 350
,
Chicago, IL
,
May 30–June 3
.
4.
Zhao
,
W.
,
Mu
,
X.
,
He
,
P.
, and
Zhou
,
H.
,
2019
, “
Advances and Challenges for Aprotic Lithium-Oxygen Batteries Using Redox Mediators
,”
Batter. Supercaps
,
2
(
10
), pp.
803
819
.
5.
Hong
,
Y. S.
,
Zhao
,
C. Z.
,
Xiao
,
Y.
,
Xu
,
R.
,
Xu
,
J. J.
,
Huang
,
J. Q.
,
Zhang
,
Q.
,
Yu
,
X.
, and
Li
,
H.
,
2019
, “
Safe Lithium-Metal Anodes for Li−O2 Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection
,”
Batter. Supercaps
,
2
(
7
), pp.
638
658
.
6.
Alvarez-Tirado
,
M.
,
Castro
,
L.
,
Guéguen
,
A.
, and
Mecerreyes
,
D.
,
2022
, “
Iongel Soft Solid Electrolytes Based on [DEME][TFSI] Ionic Liquid for Low Polarization Lithium-O2 Batteries
,”
Batter. Supercaps
,
5
(
7
), p.
e202200049
.
7.
Eftekhari
,
A.
, and
Ramanujam
,
B.
,
2017
, “
In Pursuit of Catalytic Cathodes for Lithium–Oxygen Batteries
,”
J. Mater. Chem. A Mater.
,
5
(
17
), pp.
7710
7731
.
8.
Xiong
,
M.
, and
Ivey
,
D. G.
,
2019
, “
Synthesis of Bifunctional Catalysts for Metal-Air Batteries Through Direct Deposition Methods
,”
Batter. Supercaps
,
2
(
4
), pp.
326
335
.
9.
Cao
,
D.
,
Zhang
,
S.
,
Yu
,
F.
,
Wu
,
Y.
, and
Chen
,
Y.
,
2019
, “
Carbon-Free Cathode Materials for Li−O2 Batteries
,”
Batter. Supercaps
,
2
(
5
), pp.
428
439
.
10.
Yilmaz
,
M. S.
,
Coşkun
,
M.
,
Şener
,
T.
, and
Metin
,
Ö
,
2019
, “
Silica Coated ZnFe2O4 Nanoparticles as Cathode Catalysts for Rechargeable Lithium-Air Batteries
,”
Batter. Supercaps
,
2
(
4
), pp.
380
386
.
11.
Zhou
,
W.
,
Zhang
,
H.
,
Nie
,
H.
,
Ma
,
Y.
,
Zhang
,
Y.
, and
Zhang
,
H.
,
2015
, “
Hierarchical Micron-Sized Mesoporous/Macroporous Graphene With Well-Tuned Surface Oxygen Chemistry for High Capacity and Cycling Stability Li-O2 Battery
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3389
3397
.
12.
Hegde
,
G. S.
,
Ghosh
,
A.
,
Badam
,
R.
,
Matsumi
,
N.
, and
Sundara
,
R.
,
2020
, “
Role of Defects in Low-Cost Perovskite Catalysts Toward ORR and OER in Lithium–Oxygen Batteries
,”
ACS Appl. Energy Mater.
,
3
(
2
), pp.
1338
1348
.
13.
Huang
,
J.
, and
Peng
,
Z.
,
2019
, “
Understanding the Reaction Interface in Lithium-Oxygen Batteries
,”
Batter. Supercaps
,
2
(
1
), pp.
37
48
.
14.
Nam
,
J. S.
,
Jung
,
J. W.
,
Youn
,
D. Y.
,
Cho
,
S. H.
,
Cheong
,
J. Y.
,
Kim
,
M. S.
,
Song
,
S. W.
,
Kim
,
S. J.
, and
Kim
,
I. D.
,
2020
, “
Free-Standing Carbon Nanofibers Protected by a Thin Metallic Iridium Layer for Extended Life-Cycle Li–Oxygen Batteries
,”
ACS Appl. Mater. Interfaces
,
12
(
50
), pp.
55756
55765
.
15.
Jung
,
C. Y.
,
Zhao
,
T. S.
,
Zeng
,
L.
, and
Tan
,
P.
,
2016
, “
Vertically Aligned Carbon Nanotube-Ruthenium Dioxide Core-Shell Cathode for Non-Aqueous Lithium-Oxygen Batteries
,”
J. Power Sources
,
331
, pp.
82
90
.
16.
Bharadwaj
,
N.
,
Nair
,
A. S.
,
Das
,
S.
, and
Pathak
,
B.
,
2022
, “
Size-Dependent Effects in Fullerene-Based Catalysts for Nonaqueous Li–Air Battery Applications
,”
ACS Appl. Energy Mater.
,
5
(
3
), pp.
3380
3391
.
17.
Greenburg
,
L. C.
,
Plaza-Rivera
,
C. O.
,
Kim
,
J. W.
,
Connell
,
J. W.
, and
Lin
,
Y.
,
2021
, “
Architecture Transformations of Ultrahigh Areal Capacity Air Cathodes for Lithium-Oxygen Batteries
,”
Batter. Supercaps
,
4
(
1
), pp.
120
130
.
18.
Lu
,
Y. C.
,
Gasteiger
,
H. A.
, and
Shao-Horn
,
Y.
,
2011
, “
Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries
,”
J. Am. Chem. Soc.
,
133
(
47
), pp.
19048
19051
.
19.
Lu
,
J.
,
Lei
,
Y.
,
Lau
,
K. C.
,
Luo
,
X.
,
Du
,
P.
,
Wen
,
J.
,
Assary
,
R. S.
, et al
,
2013
, “
A Nanostructured Cathode Architecture for Low Charge Overpotential in Lithium-Oxygen Batteries
,”
Nat. Commun.
,
4
(
1
), p.
2383
.
20.
Zaidi
,
S.S.H.
,
Rajendran
,
S.
,
Sekar
,
A.
,
Elangovan
,
A.
,
Li
,
J.
, and
Li
,
X.
,
2023
, “
Binder-Free Li-O2 Battery Cathodes Using Ni- and PtRu-Coated Vertically Aligned Carbon Nanofibers as Electrocatalysts for Enhanced Stability
Nano Res. Energy
.
21.
Zhou
,
M.
,
Li
,
C. Y. V.
, and
Chan
,
K. Y.
,
2017
, “
Advancing Li-O2 Battery Technology With Durable High Capacity Cathode Composed of Iron-Nitrogen-Doped Mesoporous Core-Shell Carbon Loaded with RuO2 Nanoparticles
,”
Energy Technol.
,
5
(
5
), pp.
732
739
.
22.
Qin
,
Y.
,
Lu
,
J.
,
Du
,
P.
,
Chen
,
Z.
,
Ren
,
Y.
,
Wu
,
T.
,
Miller
,
J. T.
,
Wen
,
J.
,
Miller
,
D. J.
, and
Zhang
,
Z.
,
2013
, “
In Situ Fabrication of Porous-Carbon-Supported α-MnO2 Nanorods at Room Temperature: Application for Rechargeable Li–O2 Batteries, K. Amine
,”
Energy Environ. Sci.
,
6
(
2
), pp.
519
531
.
23.
Zhang
,
P.
,
Wang
,
Z.
,
Wang
,
P.
,
Hui
,
X.
,
Zhao
,
D.
,
Zhang
,
Z.
, and
Yin
,
L.
,
2022
, “
Heteroatom Doping-Induced Defected Co3O4 Electrode for High-Performance Lithium Oxygen Battery
,”
ACS Appl. Energy Mater.
,
5
(
3
), pp.
3359
3368
.
24.
Zhu
,
L.
,
Scheiba
,
F.
,
Trouillet
,
V.
,
Georgian
,
M.
,
Fu
,
Q.
,
Sarapulpva
,
A.
,
Sigel
,
F.
,
Hua
,
W.
, and
Ehrenberg
,
H.
,
2019
, “
MnO2 and Reduced Graphene Oxide as Bifunctional Electrocatalysts for Li–O2 Batteries
,”
ACS Appl. Energy Mater.
,
2
(
10
), pp.
7121
7131
.
25.
Wright
,
J. P.
,
Sigdel
,
S.
,
Corkill
,
S.
,
Covarrubias
,
J.
,
LeBan
,
L.
,
Nepal
,
A.
,
Li
,
J.
,
Divigalpitiya
,
R.
,
Bossmann
,
S. H.
, and
Sorensen
,
C. M.
,
2022
, “
Synthesis of Turbostratic Nanoscale Graphene via Chamber Detonation of Oxygen/Acetylene Mixtures
,”
Nano Select
,
3
(
6
), pp.
1054
1068
.
26.
Sun
,
B.
,
Wang
,
B.
,
Su
,
D.
,
Xiao
,
L.
,
Ahn
,
H.
, and
Wang
,
G.
,
2012
, “
Graphene Nanosheets as Cathode Catalysts for Lithium-Air Batteries With an Enhanced Electrochemical Performance
,”
Carbon
,
50
(
2
), pp.
727
733
.
27.
Sun
,
B.
,
Huang
,
X.
,
Chen
,
S.
,
Munroe
,
P.
, and
Wang
,
G.
,
2014
, “
Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium-Oxygen Batteries
,”
Nano Lett
,
14
(
6
), pp.
3145
3152
.
28.
Han
,
J.
,
Guo
,
X.
,
Ito
,
Y.
,
Liu
,
P.
,
Hojo
,
D.
,
Aida
,
T.
,
Hirata
,
A.
, et al
,
2016
, “
Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Li-O2 Batteries
,”
Adv. Energy Mater.
,
6
(
3
), p.
1501870
.
29.
Kim
,
D. Y.
,
Kim
,
M.
,
Kim
,
D. W.
,
Suk
,
J.
,
Park
,
O. O.
, and
Kang
,
Y.
,
2015
, “
Flexible Binder-Free Graphene Paper Cathodes for High-Performance Li-O2 Batteries
,”
Carbon
,
93
, pp.
625
635
.
30.
Li
,
Y.
,
Wang
,
J.
,
Li
,
X.
,
Geng
,
D.
,
Li
,
R.
, and
Sun
,
X.
,
2011
, “
Superior Energy Capacity of Graphenenanosheets for a Nonaqueous Lithium-Oxygen Battery
,”
Chem. Commun.
,
47
(
33
), pp.
9438
9440
.
31.
Nepal
,
A.
,
Singh
,
G. P.
,
Flanders
,
B. N.
, and
Sorensen
,
C. M.
,
2013
, “
One-Step Synthesis of Graphene via Catalyst-Free gas-Phase Hydrocarbon Detonation
,”
Nanotechnology
,
24
(
24
), p.
245602
.
32.
Xiao
,
J.
,
Wang
,
D.
,
Xu
,
W.
,
Wang
,
D.
,
Williford
,
R. E.
,
Liu
,
J.
, and
Zhang
,
J.-G.
,
2010
, “
Stabilization of Silicon Anode for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
157
(
4
), p.
A487
.
33.
Mitchell
,
R. R.
,
Gallant
,
B. M.
,
Shao-Horn
,
Y.
, and
Thompson
,
C. V.
,
2013
, “
Mechanisms of Morphological Evolution of Li2O2 Particles During Electrochemical Growth
,”
J. Phys. Chem. Lett.
,
4
(
7
), pp.
1060
1064
.
34.
Xia
,
C.
,
Waletzko
,
M.
,
Chen
,
L.
,
Peppler
,
K.
,
Klar
,
P. J.
, and
Janek
,
J.
,
2014
, “
Evolution of Li2O2 Growth and Its Effect on Kinetics of Li-O2 Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
15
), pp.
12083
12092
.
35.
Li
,
J.
,
Han
,
K.
,
Huang
,
J.
,
Li
,
G.
,
Peng
,
S.
,
Li
,
N.
,
Wang
,
J.
, et al
,
2021
, “
Polarized Nucleation and Efficient Decomposition of Li2O2 for Ti2C MXene Cathode Catalyst Under a Mixed Surface Condition in Lithium-Oxygen Batteries
,”
Energy Storage Mater.
,
35
, pp.
669
678
.
36.
Younesi
,
R.
,
Hahlin
,
M.
,
Björefors
,
F.
,
Johansson
,
P.
, and
Edström
,
K.
,
2013
, “
Li–O2 Battery Degradation by Lithium Peroxide (Li2O2)
,”
Chem. Mater.
,
25
(
1
), pp.
77
84
.
37.
Kanamura
,
K.
,
Tamura
,
H.
,
Shiraishi
,
S.
, and
Takehara
,
Z.
,
1995
, “
XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4
,”
J. Electrochem. Soc.
,
142
(
2
), pp.
340
347
.
38.
Kube
,
A.
,
Bienen
,
F.
,
Wagner
,
N.
, and
Friedrich
,
K. A.
,
2022
, “
Wetting Behavior of Aprotic Li–Air Battery Electrolytes
,”
Adv. Mater. Interfaces
,
9
(
4
), p.
2101569
.
39.
Jiang
,
Q. G.
,
Ao
,
Z. M.
,
Chu
,
D. W.
, and
Jiang
,
Q.
,
2012
, “
Reversible Transition of Graphene From Hydrophobic to Hydrophilic in the Presence of an Electric Field
,”
J. Phys. Chem. C
,
116
(
36
), pp.
19321
19326
.
40.
Xu
,
Z.
,
Ao
,
Z.
,
Chu
,
D.
,
Younis
,
A.
,
Li
,
C. M.
, and
Li
,
S.
,
2014
, “
Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation
,”
Sci. Rep.
,
4
(
1
), p.
6450
.
41.
Zhang
,
X.
,
Wan
,
S.
,
Pu
,
J.
,
Wang
,
L.
, and
Liu
,
X.
,
2011
, “
Highly Hydrophobic and Adhesive Performance of Graphene Films
,”
J. Mater. Chem.
,
21
(
33
), pp.
12251
12258
.
42.
Küpper
,
J.
,
Jakobi
,
S.
, and
Simon
,
U.
,
2021
, “
PTFE Enhances Discharge Performance of Carbon Cathodes in Potassium-Oxygen Batteries
,”
Batter. Supercaps
,
4
(
10
), pp.
1620
1626
.
43.
Zhang
,
W.
,
Shen
,
Y.
,
Sun
,
D.
,
Huang
,
Z.
, and
Huang
,
Y.
,
2017
, “
Objectively Evaluating the Cathode Performance of Lithium-Oxygen Batteries
,”
Adv. Energy Mater.
,
7
(
24
), p.
1602938
.
44.
Tan
,
P.
,
Shyy
,
W.
, and
Zhao
,
T.
,
2015
, “
What is the Ideal Distribution of Electrolyte Inside Cathode Pores of Non-Aqueous Lithium–Air Batteries?
,”
Sci. Bull.
,
60
(
10
), pp.
975
976
.
45.
Gao
,
J.
,
Cai
,
X.
,
Wang
,
J.
,
Hou
,
M.
,
Lai
,
L.
, and
Zhang
,
L.
,
2018
, “
Recent Progress in Hierarchically Structured O2-Cathodes for Li-O2 Batteries
,”
Chem. Eng. J.
,
352
, pp.
972
995
.
46.
Xia
,
C.
,
Bender
,
C. L.
,
Bergner
,
B.
,
Peppler
,
K.
, and
Janek
,
J.
,
2013
, “
An Electrolyte Partially-Wetted Cathode Improving Oxygen Diffusion in Cathodes of Non-Aqueous Li–Air Batteries
,”
Electrochem. Commun.
,
26
, pp.
93
96
.
47.
Dutta
,
A.
,
Ito
,
K.
, and
Kubo
,
Y.
,
2019
, “
Establishing the Criteria and Strategies to Achieve High Power During Discharge of a Li–Air Battery
,”
J. Mater. Chem. A Mater.
,
7
(
40
), pp.
23199
23207
.
48.
Liu
,
C.
,
Sato
,
K.
,
bin Han
,
X.
, and
Ye
,
S.
,
2019
, “
Reaction Mechanisms of the Oxygen Reduction and Evolution Reactions in Aprotic Solvents for Li–O2 Batteries
,”
Curr. Opin. Electrochem.
,
14
, pp.
151
156
.
49.
Adams
,
B. D.
,
Radtke
,
C.
,
Black
,
R.
,
Trudeau
,
M. L.
,
Zaghib
,
K.
, and
Nazar
,
L. F.
,
2013
, “
Current Density Dependence of Peroxide Formation in the Li–O2 Battery and Its Effect on Charge
,”
Energy Environ. Sci.
,
6
(
6
), pp.
1772
1778
.
50.
Tan
,
P.
,
Shyy
,
W.
,
Zhao
,
T. S.
,
Wei
,
Z. H.
, and
An
,
L.
,
2015
, “
Discharge Product Morphology Versus Operating Temperature in Non-Aqueous Lithium-Air Batteries
,”
J. Power Sources
,
278
, pp.
133
140
.
51.
Plunkett
,
S. T.
,
Wang
,
H. H.
,
Park
,
S. H.
,
Lee
,
Y. J.
,
Cabana
,
J.
,
Amine
,
K.
,
Al-Hallaj
,
S.
,
Chaplin
,
B. P.
, and
Curtiss
,
L. A.
,
2020
, “
Charge Transport Properties of Lithium Superoxide in Li–O2 Batteries
,”
ACS Appl. Energy Mater.
,
3
(
12
), pp.
12575
12583
.
52.
Augustin
,
M.
,
Fenske
,
D.
, and
Parisi
,
J.
,
2016
, “
Study on Electrolyte Stability and Oxygen Reduction Reaction Mechanisms in the Presence of Manganese Oxide Catalysts for Aprotic Lithium-Oxygen Batteries
,”
Energy Technol.
,
4
(
12
), pp.
1531
1542
.
53.
Yi
,
X.
,
Liu
,
X.
,
Dou
,
R.
,
Wen
,
Z.
, and
Zhou
,
W.
,
2021
, “
Unraveling the Control Mechanism of Carbon Nanotubes on the Oxygen Reduction Reaction and Product Growth Behavior in Lithium–Air Batteries
,”
ACS Appl. Energy Mater.
,
4
(
3
), pp.
2148
2157
.
54.
Gittleson
,
F. S.
,
Jones
,
R. E.
,
Ward
,
D. K.
, and
Foster
,
M. E.
,
2017
, “
Oxygen Solubility and Transport in Li–Air Battery Electrolytes: Establishing Criteria and Strategies for Electrolyte Design
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1167
1179
.
55.
Laoire
,
C. O.
,
Mukerjee
,
S.
,
Abraham
,
K. M.
,
Plichta
,
E. J.
, and
Hendrickson
,
M. A.
,
2010
, “
Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
,”
J. Phys. Chem. C
,
114
(
19
), pp.
9178
9186
.
56.
Xu
,
D.
,
Wang
,
Z. L.
,
Zhang
,
L. L.
, and
Zhang
,
X. B.
,
2012
, “
Novel DMSO-Based Electrolyte for High Performance Rechargeable Li-O2 Batteries
,”
Chem. Commun.
,
48
(
55
), pp.
6948
6950
.
57.
Коrchagin
,
ОV
,
Bogdanovskaya
,
V. A.
,
Tripachev
,
ОV
, and
Emets
,
V. V.
,
2018
, “
Kinetics of Oxygen Reaction and Discharge/Charging Overvoltages of Li-O2 Battery With Aprotic Electrolytes
,”
Electrochem. Commun.
,
90
, pp.
43
46
.
58.
Rauter
,
M. T.
,
Augustin
,
M.
,
Spitthoff
,
L.
, and
Svensson
,
A. M.
,
2021
, “
Product Formation During Discharge: A Combined Modelling and Experimental Study for Li–O2 Cathodes in LiTFSI/DMSO and LiTFSI/TEGDME Electrolytes
,”
J. Appl. Electrochem.
,
51
(
10
), pp.
1437
1447
.
59.
Zaidi
,
S. S. H.
, and
Li
,
X.
,
2021
, “
Comparing the Electrochemical Performance of Organic and Ionic Liquid-Based Electrolytes in Lithium-Oxygen Battery
,”
ECS Meeting Abstracts MA2021-02, 144
,
Orlando, FL
,
Oct. 10–14
.
60.
Read
,
J.
,
Mutolo
,
K.
,
Ervin
,
M.
,
Behl
,
W.
,
Wolfenstine
,
J.
,
Driedger
,
A.
, and
Foster
,
D.
,
2003
, “
Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery
,”
J. Electrochem. Soc.
,
150
(
10
), p.
A1351
.
You do not currently have access to this content.